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In this survey we discuss properties of specific methods of approximation that
belong to a family of greedy approximation methods (greedy algorithms). It is
now well understood that we need to study nonlinear sparse representations
in order to significantly increase our ability to process (compress, denoise,
etc.) large data sets. Sparse representations of a function are not only a
powerful analytic tool but they are utilized in many application areas such
as image/signal processing and numerical computation. The key to finding
sparse representations is the concept of m-term approximation of the target
function by the elements of a given system of functions (dictionary). The
fundamental question is how to construct good methods (algorithms) of ap-
proximation. Recent results have established that greedy-type algorithms are
suitable methods of nonlinear approximation in both m-term approximation
with regard to bases, and m-term approximation with regard to redundant
systems. It turns out that there is one fundamental principle that allows us
to build good algorithms, both for arbitrary redundant systems and for very
simple well-structured bases, such as the Haar basis. This principle is the use
of a greedy step in searching for a new element to be added to a given m-term
approximant.
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Preface

This section provides a general introduction. Each chapter has its own more
specific introduction. A generic problem of mathematical and numerical
analysis is to approximate a function f from a Banach space X in the norm
‖·‖ of this space. There are two major approaches to this problem that lead
to two different branches of mathematical analysis. In approach (I) we begin
with an assumption of how an approximant should look. In other words, in
approach (I) we specify the form of an approximant. In approach (II) we
begin with an assumption on the information available about f . Here are
typical settings that fall into approach (I).

(Ia) An approximant comes from a given linear subspace Ln of dimension
n (algebraic polynomials of degree n − 1, trigonometric polynomials
of appropriate order, splines with n − 1 fixed knots).

(Ib) An approximant comes from a nonlinear set (rational functions; m-
term approximant with respect to a given system, splines with fixed
number of free knots).

The following are typical settings for approach (II).

(IIa) Information on f is given by a vector (f(x1), . . . , f(xn)), for some
given set (x1, . . . , xn) of points, or some set that we can choose de-
pending on the problem.

(IIb) The above setting (IIa) has a more general formulation with the func-
tionals f(xj) replaced by arbitrary linear functionals λj(f).

In this survey we mostly concentrate on approach (I). We will only touch
upon approach (II) in Section 2.9 in a discussion of compressed sensing. Ap-
proach (II) is the main issue for information-based complexity (see Traub,
Wasilkowski and Wozniakowski (1988)). A very important question in ap-
proach (I) is how to choose an appropriate form of approximants. This ques-
tion has been intensely studied in approximation theory, and resulted in the
invention of the concept of width. In 1936 A. N. Kolmogorov introduced the
following quantity (known as Kolmogorov’s width) for a compact F ⊂ X:

dn(F, X) := inf
Ln

sup
f∈F

inf
a∈Ln

‖f − a‖,

where Ln is an n-dimensional linear subspace of X. The Kolmogorov width
dn(F, X) of a compact F is an important characteristic of F that states that
the best we can achieve in approximating functions from F by elements of
linear subspaces of dimension n is dn(F, X). Therefore, if one can find an
n-dimensional subspace L∗

n and an approximation method An : F → L∗
n

such that, for any f ∈ F ,

‖f − An(f)‖ ≤ (1 + ǫ)dn(F, X),
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then An is an almost ideal approximation method for F with respect to
the Kolmogorov width. Thus, the concept of width provides a very nice
theoretical way to compare optimal approximation methods. The major
drawback of this approach from a practical point of view is that, in order
to initialize a procedure of selection of L∗

n and An, we need to know the
function class F . In many contemporary practical problems we have no
idea which class to choose in place of F .

There are two ways to overcome the above problem. The first one is to
return (in spirit) to the classical setting that goes back to Chebyshev and
Weierstrass. In this setting, we fix a priori the form of the approximant
(say, approximation by algebraic polynomials of degree n, as in the case of
Chebyshev and Weierstrass) and look for an approximation method that is
optimal, or near-optimal, for each individual function from X. For example,
the approximation method that picks the algebraic polynomial of degree n
of best approximation to f in X is an optimal method of approximation
by algebraic polynomials of degree n. However, such an obvious optimal
method of approximation may not be good from the perspective of practi-
cal implementation. This leads to the following natural setting. We specify
not only the form of the approximant, but also choose a specific method of
approximation (for instance, one known to be suitable for practical imple-
mentation). Now, we have a precise mathematical problem of studying the
efficiency of our specific method of approximation. We discuss this problem
in detail here. It turns out that a convenient and flexible way of measuring
the efficiency of a specific approximation method is to derive the corre-
sponding Lebesgue-type inequalities. Remember that we would like this
method to work for all functions; therefore, it should at least converge for
each f ∈ X, and hence convergence is a fundamental theoretical problem.
In this survey we thoroughly discuss the problem of convergence for greedy
algorithms.

The second way to overcome the above-mentioned drawback of a method
based on the concept of width consists in weakening the a priori assumption
that f is an element of F . Instead of looking for an approximation method
that is optimal (or near-optimal) for a given single class F , we look for
an approximation method that is near-optimal for each class from a given
collection F of classes. Such a method is called universal for F . Univer-
sal algorithms have been studied in approximation theory (see Temlyakov
(1988, 2003a)) and in learning theory (see, for instance, Temlyakov (2005c)).
In this survey we do not further discuss universal algorithms, but refer the
reader to the survey of Temlyakov (2003a).

In this survey we discuss properties of specific methods of approximation
that belong to a family of greedy approximation methods (greedy algo-
rithms). Realizing approach (I) mentioned above, we need to specify the
form of the approximant. We use a concept of sparsity in dealing with
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this problem. It is now well understood that we need to study nonlinear
sparse representations in order to significantly increase our ability to pro-
cess (compress, denoise, etc.) large data sets. Sparse representations are not
only a powerful analytic tool but are used in many application areas, such
as image/signal processing and numerical computation. The key to finding
sparse representations is the concept of the m-term approximation of the
target function by the elements of a given system of functions: a dictionary.
Since the elements of the dictionary used in the m-term approximation are
allowed to depend on the function being approximated, this type of approx-
imation is very efficient when the approximants can be found. Thus, we
specify the form of our approximant as an m-term approximant with regard
to a given system of functions. It is clear that this method of approximation
is a particular case of nonlinear methods of approximation.

The past decade has seen great success in studying nonlinear approxima-
tion, motivated by numerous applications: see the surveys by DeVore (1998)
and Temlyakov (2003a). Nonlinear approximation is important in applica-
tions because of its concise representations and increased computational
efficiency. Two types of nonlinear approximation are frequently employed
in applications. Adaptive methods are used in PDE solvers, while m-term
approximation, considered here, is used in image/signal/data processing,
as well as in the design of neural networks. The fundamental question of
nonlinear approximation is how to devise good constructive methods, or
algorithms, of nonlinear approximation. This problem has two levels of
nonlinearity. The first level of nonlinearity is m-term approximation with
regard to bases. In this problem one can use the unique function expansion
with regard to a given basis to build an approximant. Nonlinearity enters
by looking for m-term approximants with terms (i.e., basis elements in the
approximant) allowed to depend on the given function. We discuss m-term
approximation with regard to bases in detail in Chapter 1. On the second
level of nonlinearity, we replace a basis by a more general system which is
not necessarily minimal, for example, a redundant system, or dictionary.
This setting is much more complicated than the bases case; however, there
is a solid justification of the importance of redundant systems in both the-
oretical questions and in practical applications: see, for instance, Schmidt
(1906), Huber (1985) and Donoho (2001). In Chapters 2 and 3 we dis-
cuss approximation by linear combinations of elements that are taken from
a redundant (overcomplete) system of elements. We give a brief discus-
sion of the question: Why do we need redundant systems? Answering this
question, we first mention three classical redundant systems that are used in
different areas of mathematics. Perhaps the first example of m-term approx-
imation with regard to a redundant dictionary was considered by Schmidt
(1906), who considered the approximation of functions f(x, y) of two vari-
ables by bilinear forms

∑m
i=1 ui(x)vi(y) in L2([0, 1]2). This problem is closely
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connected to properties of the integral operator Jf (g) :=
∫ 1
0 f(x, y)g(y) dy

with kernel f(x, y).
Another example which is well known in statistics is the projection pur-

suit regression problem. We formulate the related setting in the language
of function theory. Given a bounded domain Ω ⊂ R

d, the problem is to
approximate a given function f ∈ L2(Ω) by a sum of ridge functions, i.e.,
by

∑m
j=1 rj(ωj · x), for x, ωj ∈ R

d, j = 1, . . . , m, where rj , j = 1, . . . , m, are
univariate functions.

The third example is from signal processing. In signal processing the
most popular methods of approximation are wavelets and the system of
Gabor functions {ga,b(x − c) : ga,b(x) := eiaxe−bx2

, a, c ∈ R, b ∈ R+}.
The Gabor system gives more flexibility in constructing an approximant
but it is a redundant, not minimal, system. It also seems natural to use
redundant systems in modelling analysing elements for the visual system;
see the discussion in Donoho (2001).

Thus, in order to address the contemporary needs of approximation theory
and computational mathematics, a very general model of approximation
with regard to a redundant system, or dictionary, has been considered in
many recent papers. As such a model, we choose a Banach space X whose
elements are our target functions, and an approximating system which can
be any subset D of elements of this space such that the closure of spanD
coincides with X. We would like to have an algorithm to construct m-term
approximants that, at each step, adds only one new element from D and
keeps elements of D previously obtained. This requirement is an analogue of
on-line computation that is very desirable in practical algorithms. Clearly,
we are looking for good algorithms which, at least, converge for each target
function. It is not obvious that such an algorithm exists in a setting at the
above level of generality (X, D are arbitrary).

The fundamental question is how to construct good methods, or algo-
rithms, of approximation. Recent results have established that greedy-type
algorithms are suitable methods of nonlinear approximation, in both m-
term approximation with regard to bases, and m-term approximation with
regard to redundant systems. It turns out that there is one fundamental
principle that allows us to build good algorithms both for arbitrary redun-
dant systems and for very simple well-structured bases such as the Haar
basis. This principle is the use of a greedy step in searching for a new ele-
ment gm(f) ∈ D to be added to a given m-term approximant, by which we
mean that gm(f) ∈ D should maximize a certain functional determined by
information from the previous steps of the algorithm. We obtain different
types of greedy algorithms by varying the above-mentioned functional and
also by using different ways of constructing the m-term approximant (i.e.,
choosing coefficients of the linear combination) from the previously found m
elements of the dictionary. In Chapters 2 and 3 we present different greedy-
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type algorithms, beginning with a very simple and very natural Pure Greedy
Algorithm in a Hilbert space, and ending with its rather complicated modi-
fications in a Banach space. The general goal of different modifications is to
prepare the corresponding greedy algorithms for practical implementation.
We discuss this issue in detail in Chapters 2 and 3.

It is known that in many numerical problems, users are satisfied with
a Hilbert space setting and do not consider a more general setting in a
Banach space. We now give one remark that justifies our interest in Banach
spaces. The first argument is an a priori argument that the spaces Lp are
very natural, and should be studied along with the L2-space. The second
argument is an a posteriori argument. The study of greedy approximation
in Banach spaces discovered that one very important characteristic of a
Banach space X that governs the behaviour of greedy approximations is
the modulus of smoothness ρ(u) of X (see Section 3.1 for details). It is
known that the spaces Lp, 2 ≤ p < ∞ have moduli of smoothness of the
same order u2. Thus, many results that are known for the Hilbert space
L2, and were proved using the special structure of a Hilbert space, can be
generalized to the Banach spaces Lp, 2 ≤ p < ∞. The new proofs use
only the geometry of the unit sphere of the space expressed in the form
ρ(u) ≤ γu2.

The theory of greedy approximation is developing rapidly and results
are spread over hundreds of papers by different authors. There are several
surveys that discuss greedy approximation: see DeVore (1998), Temlyakov
(2003a), Konyagin and Temlyakov (2002), Wojtaszczyk (2002a) and Tem-
lyakov (2006b). There are no books on greedy approximation at present.
We decided to include in this survey proofs of the most important and
typical results. In the majority of cases these proofs are not technically
involved and allow the reader to understand a phenomenon much better
than merely stating results. We have tried to make the presentation of
ideas and techniques of greedy approximation sufficiently systematic to be
used in a graduate course on greedy approximation.

We will use C, C(p, d), Cp,d, etc., to denote various positive constants,
the indexes indicating dependence on other parameters. We will use the
following symbols for brevity. For two non-negative sequences a = {an}∞n=1

and b = {bn}∞n=1, the relation, or order inequality, an ≪ bn means that
there is a number C(a, b) such that, for all n, we have an ≤ C(a, b) bn; and
the relation an ≍ bn means that an ≪ bn and bn ≪ an. Other notation is
defined in the text itself.
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CHAPTER ONE

Greedy approximation with respect to bases

1.1. Introduction

It is well known that in many problems it is very convenient to represent
a function by a series with respect to a given system of functions. For
example, in 1807 Fourier suggested representing a 2π-periodic function by
its series (now known as the Fourier series) with respect to the trigonometric
system. A very important feature of the trigonometric system that made it
attractive for the representation of periodic functions is orthogonality. For
an orthonormal system B := {bn}∞n=1 of a Hilbert space H with an inner
product 〈·, ·〉, one can construct a Fourier series of an element f in the
following way:

f ∼
∞

∑

n=1

〈f, bn〉bn. (1.1.1)

If the system B is a basis for H, then the series in (1.1.1) converges to f in
H and (1.1.1) provides the unique representation

f =

∞
∑

n=1

〈f, bn〉bn (1.1.2)

of f with respect to B. This representation has nice approximative proper-
ties. By Parseval’s identity,

‖f‖2 =
∞

∑

n=1

|〈f, bn〉|2, (1.1.3)

we obtain a convenient way to calculate, or estimate, the norm ‖f‖.
It is known that the partial sums

Sm(f,B) :=
m

∑

n=1

〈f, bn〉bn (1.1.4)

provide the best approximation, that is, defining

Em(f,B) := inf
{cn}

∥

∥

∥

∥

f −
m

∑

n=1

cnbn

∥

∥

∥

∥

(1.1.5)

to be the distance of f from the span{b1, . . . , bm}, we have

‖f − Sm(f,B)‖ = Em(f,B). (1.1.6)

Identities (1.1.3) and (1.1.6) are fundamental properties of Hilbert spaces
and their orthonormal bases. These properties make the theory of approx-
imation in H from the span{b1, . . . , bm}, or linear approximation theory,
simple and convenient.
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The situation becomes more complicated when we replace a Hilbert space
H by a Banach space X. In a Banach space X we consider a Schauder
basis Ψ instead of an orthonormal basis B in H. In Section 1.2 we discuss
Schauder bases in detail. If Ψ := {ψn}∞n=1 is a Schauder basis for X, then
for any f ∈ X there exists a unique representation

f =

∞
∑

n=1

an(f)ψn

that converges in X.
Theorem 1.2.3 states that the partial sum operators Sm, defined by

Sm(f, Ψ) :=
m

∑

n=1

an(f)ψn,

are uniformly bounded operators from X to X. In other words, there exists
a constant B such that, for any f ∈ X and any m, we have

‖Sm(f, Ψ)‖ ≤ B‖f‖.
This inequality implies the following analogue of (1.1.6): for any f ∈ X,

‖f − Sm(f, Ψ)‖ ≤ (B + 1)Em(f, Ψ), (1.1.7)

where

Em(f, Ψ) := inf
{cn}

∥

∥

∥

∥

f −
m

∑

n=1

cnψn

∥

∥

∥

∥

.

Inequality (1.1.7) shows that the Sm(f, Ψ) provides near-best approxima-
tion from span{ψ1, . . . , ψm}. Thus, if we are satisfied with near-best ap-
proximation instead of best approximation, then the linear approximation
theory with respect to Schauder bases becomes simple and convenient. The
partial sums Sm(·, Ψ) provide near-best approximation for any individual
element of X.

Motivated by computational issues, researchers became interested in non-
linear approximation with regard to a given system instead of linear approxi-
mation. For example, in the case of representation (1.1.2) in a Hilbert space,
one can take an approximant of the form

SΛ(f,B) :=
∑

n∈Λ

〈f, bn〉bn, |Λ| = m,

instead of an approximant Sm(f,B) from an m-dimensional linear subspace.
Then the two approximants Sm(f,B) and SΛ(f,B) have the same sparsity:
both are linear combinations of m basis elements. However, we can achieve
a better approximation error with SΛ(f,B) than with Sm(f,B) if we choose
Λ in the right way. In the case of a Hilbert space and an orthonormal
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basis B, an optimal choice Λm of Λ is obvious: Λm is a set of m indices
with the biggest (in absolute value) coefficients 〈f, bn〉. Then, by Parseval’s
identity (1.1.3), we obtain

‖f − SΛm(f,B)‖ ≤ ‖f − Sm(f,B)‖.
Also, it is clear that the SΛm(f,B) realizes the best m-term approximation

of f with regard to B,

‖f − SΛm(f,B)‖ = σm(f,B) := inf
Λ:|Λ|=m

inf
{cn}

∥

∥

∥

∥

f −
∑

n∈Λ

cnbn

∥

∥

∥

∥

. (1.1.8)

The approximant SΛm(f,B) can be obtained as a realization of m itera-
tions of the following greedy approximation step. For a given f ∈ H we
choose at a greedy step an index n1 with the biggest |〈f, bn1〉|. At a greedy
approximation step we build a new element f1 := f − 〈f, bn1〉bn1 .

The identity (1.1.8) shows that the greedy approximation works perfectly
in nonlinear approximation in a Hilbert space with regard to an orthonormal
basis B.

This chapter is devoted to a systematic study of greedy approximation
in Banach spaces. In Section 1.2 we discuss the following natural question.
Equation (1.1.8) proves the existence of the best m-term approximant in
a Hilbert space with respect to an orthonormal basis. Further, we discuss
existence of the best m-term approximant in a Banach space with respect
to a Schauder basis. That discussion illustrates that the situation with
existence theorems is much more complex in Banach spaces than in Hilbert
spaces. We also give some sufficient conditions on a Schauder basis that
guarantee existence of the best m-term approximant. However, the problem
is far from being completely solved.

The central issue of this chapter is the following question. Which bases
are suitable for greedy approximation? Greedy approximation with regard
to a Schauder basis is defined in a similar way to the greedy approximation
with regard to an orthonormal basis (see above). The greedy algorithm
picks the terms with the biggest (in absolute value) coefficients from the
expansion

f =

∞
∑

n=1

an(f)ψn, (1.1.9)

and gives a greedy approximant

Gm(f, Ψ) := SΛm(f, Ψ) :=
∑

n∈Λm

an(f)ψn.

Here, Λm is such that |Λm| = m and

min
n∈Λm

|an(f)| ≥ max
n/∈Λm

|an(f)|.
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We note that we need some restrictions on the basis Ψ (see Sections 1.3
and 1.4 for a detailed discussion) in order to be able to run the greedy
algorithm for each f ∈ X. It is sufficient to assume that Ψ is normalized.
We make this assumption for our further discussion in the Introduction.

An application of the greedy algorithm can also be seen as a rearrange-
ment of the series from (1.1.9) in a special way: according to the size of
coefficients. Let

|an1 | ≥ |an2 | ≥ · · · .

Then

Gm(f, Ψ) =
m

∑

j=1

anj (f)ψnj .

Thus, the greedy approximant Gm(f, Ψ) is a partial sum of the rearranged
series

∞
∑

j=1

anj (f)ψnj . (1.1.10)

An immediate question with (1.1.10) is: When does this series converge?
The theory of convergence of rearranged series is a classical topic in analy-
sis. A series converges unconditionally if every rearrangement of this series
converges. A basis Ψ of a Banach space X is said to be an unconditional

basis if, for every f ∈ X, its expansion (1.1.9) converges unconditionally.
For a set of indices Λ define

SΛ(f, Ψ) :=
∑

n∈Λ

an(f)ψn.

It is well known that if Ψ is unconditional then there exists a constant K
such that, for any Λ,

‖SΛ(f, Ψ)‖ ≤ K‖f‖. (1.1.11)

This inequality is similar to ‖Sm(f, Ψ)‖ ≤ B‖f‖ and implies an analogue of
(1.1.7):

‖f − SΛ(f, Ψ)‖ ≤ (K + 1)EΛ(f, Ψ), (1.1.12)

where

EΛ(f, Ψ) := inf
{cn}

∥

∥

∥

∥

f −
∑

n∈Λ

cnψn

∥

∥

∥

∥

.

Inequality (1.1.12) indicates that in the case of an unconditional basis Ψ
it is sufficient for finding near-best m-term approximant to optimize only
over the sets of indices Λ. The greedy algorithm Gm(·, Ψ) gives a sim-
ple recipe for building Λm: pick the indices with biggest coefficients. In
Section 1.3 we discuss in detail when the above simple recipe provides a
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near-best m-term approximant. It turns out that the assumption that Ψ is
merely unconditional does not guarantee that Gm(·, Ψ) provides a near-best
m-term approximation. We also discuss a new class of bases (greedy bases)
that has the property that Gm(f, Ψ) provides a near-best m-term approxi-
mation for each f ∈ X. We show that the class of greedy bases is a proper
subclass of the class of unconditional bases.

It follows from the definition of an unconditional basis that any rearrange-
ment of the series in (1.1.9) converges. It is known that it converges to f .
The rearrangement (1.1.10) is a specific rearrangement of (1.1.9). Clearly,
for an unconditional basis Ψ, (1.1.10) converges to f . It turns out that un-
conditionality of Ψ is not a necessary condition for convergence of (1.1.10)
for each f ∈ X. Bases that have the property of convergence of (1.1.10) for
each f ∈ X are exactly the quasi-greedy bases (see Section 1.4).

Let us summarize our discussion of bases in Banach spaces. Schauder
bases are natural for convergence of Sm(f, Ψ) and convenient for linear ap-
proximation theory. Other classical bases, namely, unconditional bases, are
natural for convergence of all rearrangements of expansions. The needs of
nonlinear approximation, or, more specifically, the needs of greedy approx-
imation lead us to new concepts of bases: greedy bases and quasi-greedy
bases. The relations between these bases are the following:

{greedy bases} ⊂ {unconditional bases} ⊂
{quasi-greedy bases} ⊂ {Schauder bases}.

All the inclusions ⊂ are proper inclusions. In this chapter we provide a jus-
tification of the importance of the new classes of bases. With a belief in the
importance of greedy bases and quasi-greedy bases, we discuss here the fol-
lowing natural questions. Could we weaken a rule of building Gm(f, Ψ) and
still have good approximation and convergence properties? We answer this
question in Sections 1.5 and 1.6. What can be said about classical systems,
say, the Haar system and the trigonometric system, in this regard? We
discuss this question in Sections 1.3 and 1.7. How to build the approxima-
tion theory (mostly, direct and inverse theorems) for m-term approximation
with regard to greedy-type bases? Section 1.8 is devoted to this question.

1.2. Schauder bases in Banach spaces

Schauder bases in Banach spaces are used to associate a sequence of numbers
with an element f ∈ X: these are the coefficients of f with respect to a
basis. This helps in studying properties of a Banach space X. We begin with
some classical results on Schauder bases: see, for instance, Lindenstrauss
and Tzafriri (1977).

Definition 1.2.1. A sequence Ψ := {ψn}∞n=1 in a Banach space X is called
a Schauder basis of X (basis of X) if, for any f ∈ X, there exists a unique
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sequence {an}∞n=1 := {an(f)}∞n=1 such that

f =
∞

∑

n=1

anψn.

Let

S0(f) := 0, Sm(f) := Sm(f, Ψ) :=
m

∑

n=1

an(f)ψn.

For a fixed basis Ψ, consider the following quantity:

|||f ||| := sup
m

‖Sm(f, Ψ)‖.

It is clear that, for any f ∈ X we have

‖f‖ ≤ |||f ||| < ∞. (1.2.1)

It is easy to see that ||| · ||| provides a norm on the linear space X. Denote
this new normed linear space by Xs.

Proposition 1.2.2. The space Xs is a Banach space.

Theorem 1.2.3. Let X be a Banach space with a Schauder basis Ψ. Then
the operators Sm : X → X are bounded linear operators and

sup
m

‖Sm‖ < ∞.

The proof of this theorem is based on the following fundamental theorem
of Banach.

Theorem 1.2.4. Let U , V be Banach spaces and T be a bounded linear
one-to-one operator from V to U . Then the inverse operator T−1 is a
bounded linear operator from U to V .

We specify U = X, V = Xs, and let T be the identity map. It follows
from (1.2.1) that T is a bounded operator from V to U . Thus, by Theo-
rem 1.2.4, T−1 is also bounded. This means that there exists a constant C
such that, for any f ∈ X, we have |||f ||| ≤ C‖f‖. This completes the proof
of Theorem 1.2.3.

The operators {Sm}∞m=1 are called the natural projections associated with
a basis Ψ. The number supm ‖Sm‖ is called the basis constant of the basis Ψ.
A basis whose basis constant is one is called a monotone basis. It is clear that
an orthonormal basis in a Hilbert space is a monotone basis. Every Schauder
basis Ψ is monotone with respect to the norm |||f ||| := supm ‖Sm(f, Ψ)‖,
which was already used above. Indeed, we have

|||Sm(f)||| = sup
n

‖Sn(Sm(f))‖ = sup
1≤n≤m

‖Sn(f)‖ ≤ |||f |||.
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The above remark means that for any Schauder basis Ψ of X we can renorm
X (take Xs) to make the basis Ψ monotone for a new norm.

Theorem 1.2.5. Let {xn}∞n=1 be a sequence of elements in a Banach space
X. Then {xn}∞n=1 is a Schauder basis of X if and only if the following three
conditions hold.

(a) xn = 0 for all n.

(b) There is a constant K such that, for every choice of scalars {ai}∞i=1 and
integers n < m, we have

∥

∥

∥

∥

n
∑

i=1

aixi

∥

∥

∥

∥

≤ K

∥

∥

∥

∥

m
∑

i=1

aixi

∥

∥

∥

∥

.

(c) The closed linear span of {xn}∞n=1 coincides with X.

We note that for a basis Ψ with the basis constant K, we have for any
f ∈ X

‖f − Sm(f, Ψ)‖ ≤ (K + 1) inf
{ck}

∥

∥

∥

∥

f −
m

∑

k=1

ckψk

∥

∥

∥

∥

.

Thus, the partial sums Sm(f, Ψ) provide near-best approximation from
span{ψ1, . . . , ψm}.

Let a Banach space X, with a basis Ψ = {ψk}∞k=1, be given. In order
to understand the efficiency of an algorithm providing an m-term approx-
imation we compare its accuracy with the best-possible accuracy when an
approximant is a linear combination of m terms from Ψ. We define the best
m-term approximation with regard to Ψ as follows:

σm(f) := σm(f, Ψ)X := inf
ck,Λ

∥

∥

∥

∥

f −
∑

k∈Λ

ckψk

∥

∥

∥

∥

X

,

where the infimum is taken over coefficients ck and sets of indices Λ with
cardinality |Λ| = m. We note that in the above definition of σm(f, Ψ)X the
system Ψ may be any system of elements from X, not necessarily a basis
of X.

An immediate natural question is when the best m-term approximant
exists. This question is a more difficult problem than the corresponding
problem in the case of linear approximation. The problem of existence
of best m-term approximant with regard to a basis has not been studied
thoroughly. We present here some results in this direction.

Let us proceed to the approximation problem setting. Let a subset A ⊂ X
be given. For any f ∈ X, let

d(f, A) := d(f, A)X := inf
a∈A

‖f − a‖
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denote the distance from f to A, or in other words the best approximation
error of f by elements from A in the norm of X. To illustrate some relevant
techniques in this direction, let us prove existence theorems in the following
two settings.

S1 Let X = Lp(0, 2π), 1 ≤ p < ∞, or X = L∞(0, 2π) := C(0, 2π) be
the set of 2π-periodic functions. Consider A to be the set Σm of all
complex trigonometric polynomials or Σm(R) of all real trigonometric
polynomials which have at most m non-zero coefficients:

Σm :=

{

t : t =
∑

k∈Λ

cke
ikx, #Λ ≤ m

}

,

Σm(R) :=

{

t : t =
∑

k∈Λ1

ak cos kx +
∑

k∈Λ2

bk sin kx, #Λ1 + #Λ2 ≤ m

}

.

We will also use the following notation in this case:

σm(f, T )X := d(f, Σm)X .

S2 Let X = Lp(0, 1), 1 ≤ p < ∞ and let A be the set ΣS
m of piecewise

constant functions with at most m − 1 break-points at (0, 1).

In the setting S2 we prove here the following existence theorem (see De-
Vore and Lorenz (1993), p. 363).

Theorem 1.2.6. For any f ∈ Lp(0, 1), 1 ≤ p < ∞, there exists g ∈ ΣS
m

such that

d(f, ΣS
m)p = ‖f − g‖p.

Proof. Fix the break-points 0 = y0 ≤ y1 ≤ · · · ≤ ym−1 ≤ ym = 1, let
y := (y0, . . . , ym), and let S0(y) be the set of piecewise constant functions
with break-points y1, . . . , ym−1. Further, let

ey
m(f)p := inf

a∈S0(y)
‖f − a‖p.

From the definition of d(f, ΣS
m)p, there exists a sequence yi such that

eyi

m(f)p → d(f, ΣS
m)p

when i → ∞. Considering a subsequence of {yi}, if necessary we can assume
that yi → y∗ for some y∗ ∈ R

m+1. Now we consider only those indices j
for which y∗j−1 = y∗j . Let Λ denote the corresponding set of indices. Take a
positive number ǫ satisfying

ǫ < min
j∈Λ

(y∗j − y∗j−1)/3,

and consider i such that

‖y∗ − yi‖∞ < ǫ, where ‖y‖∞ := max
k

|yk|. (1.2.2)
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By the existence theorem in the case of approximation by elements of a
subspace of finite dimension, for each yi there exists

g(f, yi, ci) :=
m

∑

j=1

ci
jχ[yi

j−1,yi
j ]
,

where χE denotes the characteristic function of a set E, with the property

‖f − g(f, yi, ci)‖p = eyi

m(f)p.

For i satisfying (1.2.2) and j ∈ Λ we have |ci
j | ≤ C(f, ǫ), which allows us to

assume (passing to a subsequence if necessary) the convergence

lim
i→∞

ci
j = cj , j ∈ Λ.

Consider

g(f, c) :=
∑

j∈Λ

cjχ[y∗
j−1,y∗

j ].

Let Uǫ(y) := ∪j(yj − ǫ, yj + ǫ) and introduce G := [0, 1] \ Uǫ(y
∗). Then we

have
∫

G
|f − g(f, c)|p = lim

i→∞

∫

G
|f − g(f, yi, ci)|p ≤ d(f, ΣS

m)p
p.

Letting ǫ → 0, we complete the proof.

We proceed now to the trigonometric case S1. We will give the proof in
the general d-variable case for T d := T × · · · × T (d times) because this
generality does not introduce any complication. The following theorem was
essentially proved in Baishanski (1983). The presented proof is taken from
Temlyakov (1998c).

Theorem 1.2.7. Let 1 ≤ p ≤ ∞. For any f ∈ Lp(T
d) and any m ∈ N,

there exists a trigonometric polynomial tm of the form

tm(x) =
m

∑

n=1

cnei(kn,x), (1.2.3)

such that

σm(f, T d)p = ‖f − tm‖p. (1.2.4)

Proof. We prove this theorem by induction. Let us use the abbreviated
notation σm(f)p := σm(f, T d)p.

First step. Let m = 1. We assume σ1(f)p < ‖f‖p, because in the case
σ1(f)p = ‖f‖p the proof is trivial: we take t1 = 0. We now prove that

polynomials of the form c ei(k,x) with big |k| cannot provide approximation
with error close to σ1(f)p. This will allow us to restrict the search for an
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optimal approximant c1e
i(k1,x) to a finite number of k1, which in turn will

imply the existence.
We introduce a parameter N ∈ N, which will be specified later on, and

consider the following polynomials:

KN (u) :=
∑

|k|<N

(

1 − |k|
N

)

eiku, u ∈ T, (1.2.5)

and

KN (x) :=
d

∏

j=1

KN (xj), x = (x1, . . . , xd) ∈ T
d.

The functions KN are the Fejér kernels. These polynomials have the follow-
ing property (for (1.2.6) see Zygmund (1959, Chapter 3, Section 3)):

‖KN‖1 = 1, N = 1, 2, . . . . (1.2.6)

Consider the operator

(KN (g))(x) = (2π)−d

∫

Td

KN (x − y)g(y) dy. (1.2.7)

Let

eN (g) := ‖g − KN (g)‖p. (1.2.8)

It is known that for any f ∈ Lp(T
d) we have eN → 0 as N → ∞. For fixed

N take any k ∈ Z
d such that ‖k‖∞ ≥ N . Consider g(x) = f(x) − c ei(k,x)

with some c. Using (1.2.5) and (1.2.6), we get on the one hand

‖KN (f)‖p = ‖KN (g)‖p ≤ ‖g‖p. (1.2.9)

On the other hand, we have

‖KN (f)‖p ≥ ‖f‖p − ‖f − KN (f)‖p ≥ ‖f‖p − eN (f). (1.2.10)

Therefore, combining (1.2.9) and (1.2.10) we obtain, for all k, ‖k‖∞ ≥ N ,
and any c,

‖f(x) − c ei(k,x)‖p ≥ ‖f‖p − eN (f). (1.2.11)

Making N big enough, we get

‖f‖p − eN (f) ≥ (‖f‖p + σ1(f)p)/2. (1.2.12)

Relations (1.2.11) and (1.2.12) imply

σ1(f)p = inf
c,‖k‖∞<N

‖f(x) − c ei(k,x)‖p,

which completes the proof for m = 1, by the existence theorem in the case
of approximation by elements of a subspace of finite dimension.
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General step. Assume that Theorem 1.2.7 has already been proved for
m − 1. We prove it for m. If σm(f)p = σm−1(f)p, we are done, by the
induction assumption. Let σm(f)p < σm−1(f)p. The idea of the proof in
the general step is similar to that in the first step.

Take any k1, . . . , km. Assume ‖kj‖∞ ≤ ‖km‖∞, j = 1, . . . , m − 1, and
‖km‖∞ > N . We prove that a polynomial with frequencies k1, . . . , km does
not provide good approximation. Take any numbers c1, . . . , cm, and consider

fm−1(x) := f(x) −
m−1
∑

j=1

cje
i(kj ,x),

g(x) := fm−1(x) − cmei(km,x).

Then, replacing f by fm−1, we get in the same way as above the estimate
∥

∥

∥

∥

f(x) −
m

∑

j=1

cje
i(kj ,x)

∥

∥

∥

∥

p

≥ σm−1(f)p − eN (f). (1.2.13)

We remark here that the analogue to (1.2.10) looks as follows:

‖KN (fm−1)‖p ≥ σm−1(KN (f))p

≥ σm−1(f)p − ‖f − KN (f)‖p

≥ σm−1(f)p − eN (f).

Making N big enough, we derive from (1.2.13) that

σm(f)p = inf

(

inf
cj ,j=1,...,m

∥

∥

∥

∥

f(x) −
m

∑

j=1

cje
i(kj ,x)

∥

∥

∥

∥

p

)

,

where the infimum is taken over kj satisfying the restriction ‖kj‖∞ ≤ N for
all j = 1, . . . , m. In order to complete the proof of Theorem 1.2.7, it remains
to remark that, by the existence theorem in the case of approximation by
elements of a subspace of finite dimension, the inside infimum can always
be replaced by minimum, and the outside infimum is taken over a finite set.
This completes the proof.

Concerning the problem of uniqueness of the best approximant, we will
only make a remark that shows that in the m-term nonlinear approximation
we can hardly expect the unicity. Let us consider problem S1 on best m-
term trigonometric approximation in a particular case X = L2(0, 2π). Take

f(x) =
n

∑

k=1

eikx.

Clearly, σ1(f)2 = (n− 1)1/2 and each eikx, k = 1, . . . , n may serve as a best
approximant.
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We can prove the following existence theorem (see Temlyakov (2001a)) in
a similar way to the proof of Theorem 1.2.7.

Theorem 1.2.8. Let Ψ be a monotone basis of X. Then, for any x ∈ X
and any m ∈ N, there exist Λm, |Λm| ≤ m, and {c∗i : i ∈ Λm} such that

∥

∥

∥

∥

f −
∑

i∈Λm

c∗i ψi

∥

∥

∥

∥

= σm(f, Ψ).

Here is one more existence theorem from Temlyakov (2001a).

Theorem 1.2.9. Let Ψ be a normalized (‖ψk‖ = 1, k = 1, . . .) Schauder
basis of X with the additional property that ψk converges weakly to 0.
Then, for any f ∈ X, and any m ∈ N, there exist Λm, |Λm| ≤ m, and
{c∗i : i ∈ Λm} such that

∥

∥

∥

∥

f −
∑

i∈Λm

c∗i ψi

∥

∥

∥

∥

= σm(f, Ψ).

Proof. The proof is a development of ideas from Baishanski (1983). In
order to sketch the idea of the proof, let us consider first the case m = 1.
Let

‖f − cknψkn‖ → σ1(f, Ψ), n → ∞. (1.2.14)

If

lim inf
n→∞

kn < ∞,

then there exists k and a sequence {an} such that

‖f − anψk‖ → σ1(f, Ψ), n → ∞. (1.2.15)

Using the fact that Ψ is a Schauder basis, we infer from (1.2.15) that the
sequence {an} is bounded. Choosing a convergent subsequence of {an}, we
construct an a such that

‖f − aψk‖ = σ1(f, Ψ),

which proves existence in this case. Assume now that

lim
n→∞

kn = ∞.

Let Ff be a norming (peak) functional for f : Ff (f) = ‖f‖, ‖Ff‖ = 1. Then

‖f − cknψkn‖ ≥ Ff (f − cknψkn) = ‖f‖ − cknFf (ψkn). (1.2.16)

Relation (1.2.14) implies boundedness of {ckn}, and therefore, by weak con-
vergence to 0 of {ψk}, we get from (1.2.16) and (1.2.14) that

σ1(f, Ψ) = ‖f‖.
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Thus we can take 0 as a best approximant. Let us now consider the general
case of m-term approximation. Let

fn :=
m

∑

j=1

cn
kn

j
ψkn

j
, kn

1 < kn
2 < · · · < kn

m,

be such that

‖f − fn‖ → σm(f, Ψ).

Then we have

|cn
kn

j
| ≤ M (1.2.17)

for all n, j with some constant M . Assume that we have

lim inf
n→∞

kn
j < ∞, for some (possibly none) j = 1, . . . , l ≤ m,

lim
n→∞

kn
j = ∞, for some (possibly none) j = l + 1, . . . , m.

Then, as in the case of m = 1 we find Λ, |Λ| ≤ l, and a subsequence {ns}∞s=1

such that
∑

k∈Λ

cns
k ψk →

∑

k∈Λ

ckψk =: y. (1.2.18)

Consider the norming functional Ff−y. We have from (1.2.17), (1.2.18) and
weak convergence of {ψk} to 0 that

Ff−y(f
ns − y) → 0, as s → ∞.

Thus

‖f − y‖ = Ff−y(f − y) = Ff−y(f − fns + fns − y)

≤ ‖f − fns‖ + |Ff−y(f
ns − y)| → σm(f, Ψ),

as s → ∞. This implies that

‖f − y‖ = σm(f, Ψ),

which completes the proof of Theorem 1.2.9.

The following observation is from Wojtaszczyk (2002b).

Remark 1.2.10. It is clear from the proof of Theorem 1.2.9 that the
condition of weak convergence of ψk to 0 can be replaced by the condition
y(ψk) → 0 for every y ∈ Y . Here, Y ⊂ X∗ is such that, for all f ∈ X,

‖f‖ = sup
y∈Y,‖y‖≤1

|y(f)|.

Also, Wojtaszczyk (2002b) contains an example of an unconditional basis
Ψ and an element f such that the best m-term approximation of f with
regard to Ψ does not exist.
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1.3. Greedy bases

Let a Banach space X, with a basis Ψ = {ψk}∞k=1, be given. We assume
that ‖ψk‖ ≥ C > 0, k = 1, 2, . . . , and consider the following theoretical
greedy algorithm. For a given element f ∈ X we consider the expansion

f =
∞

∑

k=1

ck(f, Ψ)ψk. (1.3.1)

For an element f ∈ X we say that a permutation ρ of the positive integers
is decreasing if

|ck1(f, Ψ)| ≥ |ck2(f, Ψ)| ≥ · · · , (1.3.2)

where ρ(j) = kj , for j = 1, 2, . . . , and write ρ ∈ D(f). If the inequalities are
strict in (1.3.2), then D(f) consists of only one permutation. We define the
mth greedy approximant of f , with respect to the basis Ψ corresponding to
a permutation ρ ∈ D(f), by the formula

Gm(f) := Gm(f, Ψ) := Gm(f, Ψ, ρ) :=
m

∑

j=1

ckj (f, Ψ)ψkj .

We note that there is another natural greedy-type algorithm based on or-
dering ‖ck(f, Ψ)ψk‖ instead of ordering absolute values of coefficients. In
this case we do not need the restriction ‖ψk‖ ≥ C > 0, k = 1, 2, . . . . Let
Λm(f) be a set of indices such that

min
k∈Λm(f)

‖ck(f, Ψ)ψk‖ ≥ max
k/∈Λm(f)

‖ck(f, Ψ)ψk‖.

We define GX
m(f, Ψ) by the formula

GX
m(f, Ψ) := SΛm(f)(f, Ψ), where SE(f) := SE(f, Ψ) :=

∑

k∈E

ck(f, Ψ)ψk.

It is clear that for a normalized basis (‖ψk‖ = 1, k = 1, 2, . . .) the above
two greedy algorithms coincide. It is also clear that the above greedy al-
gorithm GX

m(·, Ψ) can be considered as a greedy algorithm Gm(·, Ψ′), with
Ψ′ := {ψk/‖ψk‖}∞k=1 being a normalized version of the Ψ. Thus, we will
concentrate on studying the algorithm Gm(·, Ψ). In the above definition of
Gm(·, Ψ) we impose an extra condition on a basis Ψ: infk ‖ψk‖ > 0. This
restriction allows us to define Gm(f, Ψ) for all f ∈ X. For the sake of
completeness we will also discuss the case

inf
k
‖ψk‖ = 0. (1.3.3)
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In this case we define the Gm(f, Ψ) in the same way as above, but only for
f of a special form:

f =
∑

k∈Y

ck(f, Ψ)ψk, |Y | < ∞. (1.3.4)

The above algorithm Gm(·, Ψ) is a simple algorithm which describes the
theoretical scheme for m-term approximation of an element f . We call this
algorithm the Greedy Algorithm (GA). In order to understand the efficiency
of this algorithm we compare its accuracy with the best-possible accuracy
when an approximant is a linear combination of m terms from Ψ. We define
the best m-term approximation error with respect to Ψ as follows:

σm(f) := σm(f, Ψ)X := inf
ck,Λ

∥

∥

∥

∥

f −
∑

k∈Λ

ckψk

∥

∥

∥

∥

X

,

where the infimum is taken over coefficients ck and sets of indices Λ with
cardinality |Λ| = m. The best we can achieve with the algorithm Gm is

‖f − Gm(f, Ψ, ρ)‖X = σm(f, Ψ)X ,

or the slightly weaker

‖f − Gm(f, Ψ, ρ)‖X ≤ Gσm(f, Ψ)X , (1.3.5)

for all elements f ∈ X, and with a constant G = C(X, Ψ) independent of
f and m. It was mentioned in the Introduction (see (1.1.8)) that, when
X = H is a Hilbert space and B is an orthonormal basis, we have

‖f − Gm(f,B, ρ)‖H = σm(f,B)H .

Let us begin our discussion with an important class of bases: wavelet-
type bases. For X = Lp, we will write p instead of Lp. Let H := {Hk}∞k=1
denote the Haar basis on [0, 1) normalized in L2(0, 1). We denote by Hp :=
{Hk,p}∞k=1 the Haar basis H renormalized in Lp(0, 1), which is defined as
follows: H1,p = 1 on [0, 1) and, for k = 2n + l, l = 1, 2, . . . , 2n, n = 0, 1, . . . ,

Hk,p =











2n/p, x ∈ [(2l − 2)2−n−1, (2l − 1)2−n−1),

− 2n/p, x ∈ [(2l − 1)2−n−1, 2l2−n−1),

0, otherwise.

We will use the following definition of the Lp-equivalence of bases. We
say that Ψ = {ψk}∞k=1 is Lp-equivalent to Φ = {φk}∞k=1 if for any finite set
Λ and any coefficients ck, k ∈ Λ, we have

C1(p, Ψ, Φ)

∥

∥

∥

∥

∑

k∈Λ

ckφk

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

∑

k∈Λ

ckψk

∥

∥

∥

∥

p

≤ C2(p, Ψ, Φ)

∥

∥

∥

∥

∑

k∈Λ

ckφk

∥

∥

∥

∥

p
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with two positive constants C1(p, Ψ, Φ), C2(p, Ψ, Φ) which may depend on
p, Ψ, and Φ. For sufficient conditions on Ψ to be Lp-equivalent to H, see
Frazier and Jawerth (1990) and DeVore, Konyagin and Temlyakov (1998).
In particular, it is known that all reasonable univariate wavelet-type bases
are Lp-equivalent to H for 1 < p < ∞. We proved the following theorem in
Temlyakov (1998a).

Theorem 1.3.1. Let 1 < p < ∞ and let a basis Ψ be Lp-equivalent to
the Haar basis H. Then, for any f ∈ Lp(0, 1), we have

‖f − Gp
m(f, Ψ)‖p ≤ C(p, Ψ)σm(f, Ψ)p

with a constant C(p, Ψ) independent of f and m.

By a simple renormalization argument we obtain the following version of
Theorem 1.3.1.

Theorem 1.3.1A. Let 1 < p < ∞ and let a basis Ψ be Lp-equivalent to
the Haar basis Hp. Then, for any f ∈ Lp(0, 1) and any ρ ∈ D(f), we have

‖f − Gm(f, Ψ, ρ)‖p ≤ C(p, Ψ)σm(f, Ψ)p

with a constant C(p, Ψ) independent of f , ρ, and m.

We note that Temlyakov (1998a) also contains a generalization of The-
orem 1.3.1 to the multivariate Haar basis obtained by the multi-resolution
analysis procedure. These theorems motivated us to consider the general
setting of greedy approximation in Banach spaces. We concentrated on
studying bases which satisfy (1.3.5) for all individual functions. Defini-
tions 1.3.2–1.3.4, below, are from Konyagin and Temlyakov (1999a).

Definition 1.3.2. We call a basis Ψ a greedy basis if, for every f ∈ X (in
the case infk ‖ψk‖ > 0) and for f of the form (1.3.4) (in the case infk ‖ψk‖ =
0), there exists a permutation ρ ∈ D(f) such that the inequality

‖f − Gm(f, Ψ, ρ)‖X ≤ Gσm(f, Ψ)X (1.3.6)

holds with a constant independent of f , m.

Theorem 1.3.1A shows that each basis Ψ which is Lp-equivalent to the
univariate Haar basis Hp is a greedy basis for Lp(0, 1), 1 < p < ∞. We
note that for a Hilbert space each orthonormal basis is a greedy basis with
a constant G = 1 (see (1.3.6)).

We now give the definitions of unconditional and democratic bases.

Definition 1.3.3. A basis Ψ = {ψk}∞k=1 of a Banach space X is said to
be unconditional if, for every choice of signs θ = {θk}∞k=1, θk = 1 or −1,
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k = 1, 2, . . . , the linear operator Mθ defined by

Mθ

(

∞
∑

k=1

akψk

)

=
∞

∑

k=1

akθkψk

is a bounded operator from X into X.

Definition 1.3.4. We say that a basis Ψ = {ψk}∞k=1 is a democratic basis
for X if there exists a constant D := D(X, Ψ) such that, for any two finite
sets of indices P and Q with the same cardinality |P | = |Q|, we have

∥

∥

∥

∥

∑

k∈P

ψk

∥

∥

∥

∥

≤ D

∥

∥

∥

∥

∑

k∈Q

ψk

∥

∥

∥

∥

.

We proved in Konyagin and Temlyakov (1999a) the following theorem.

Theorem 1.3.5. A basis is greedy if and only if it is unconditional and
democratic.

This theorem gives a characterization of greedy bases. Further investiga-
tions (Temlyakov 1998b, Cohen, DeVore and Hochmuth 2000, Kerkyachar-
ian and Picard 2004, Gribonval and Nielsen 2001b, Kamont and Temlyakov
2004) showed that the concept of greedy bases is very useful in direct and
inverse theorems of nonlinear approximation and also in applications in
statistics.

Let us make a remark on bases Ψ that satisfy condition (1.3.3). In this
case the greedy algorithm Gm(·, Ψ) is defined only for f of the form (1.3.4).
However, if Ψ is a greedy basis, then by Theorem 1.3.5 it is democratic, and
therefore satisfies the condition infk ‖ψk‖ > 0. Thus, there are no greedy
bases satisfying (1.3.3).

An interesting generalization of m-term approximation was considered in
Cohen et al. (2000). Let Ψ = {ψI}I be a basis indexed by dyadic intervals.
Take an α and assign to each index set Λ the following measure:

Φα(Λ) :=
∑

I∈Λ

|I|α.

In the case α = 0 we get Φ0(Λ) = |Λ|. An analogue of best m-term approx-
imation is as follows:

inf
Λ:Φα(Λ)≤m

inf
cI ,I∈Λ

∥

∥

∥

∥

f −
∑

I∈Λ

cIψI

∥

∥

∥

∥

p

.

A detailed study of this type of approximation (restricted approximation)
can be found in Cohen et al. (2000).

We now elaborate on the idea of assigning to each basis element ψk a non-
negative weight wk. We discuss weight-greedy bases and prove a criterion
for weight-greedy bases similar to that for greedy bases.
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Let Ψ be a basis for X. As above, if infn ‖ψn‖ > 0 then cn(f) → 0 as
n → ∞, where

f =
∞

∑

n=1

cn(f)ψn.

Then we can rearrange the coefficients {cn(f)} in the decreasing order

|cn1(f)| ≥ |cn2(f)| ≥ · · · ,

and define the mth greedy approximant as

Gm(f, Ψ) :=
m

∑

k=1

cnk
(f)ψnk

. (1.3.7)

In the case infn ‖ψn‖ = 0 we define Gm(f, Ψ) by (1.3.7) for f of the form

f =
∑

n∈Y

cn(f)ψn, |Y | < ∞. (1.3.8)

Let a weight sequence w = {wn}∞n=1, wn > 0, be given. For Λ ⊂ N, denote
w(Λ) :=

∑

n∈Λ wn. For a positive real number v > 0 define

σw
v (f, Ψ) := inf

{bn},Λ:w(Λ)≤v

∥

∥

∥

∥

f −
∑

n∈Λ

bnψn

∥

∥

∥

∥

,

where Λ are finite.
We present results from Kerkyacharian, Picard and Temlyakov (2006).

Definition 1.3.6. We call a basis Ψ a weight-greedy basis (w-greedy ba-
sis) if for any f ∈ X in the case infn ‖ψn‖ > 0 or for any f ∈ X of the form
(1.3.8) in the case infn ‖ψn‖ = 0, we have

‖f − Gm(f, Ψ)‖ ≤ CGσw
w(Λm)(f, Ψ),

where Λm is obtained from the representation

Gm(f, Ψ) =
∑

n∈Λm

cn(f)ψn, |Λm| = m.

Definition 1.3.7. We call a basis Ψ a weight-democratic basis (w-demo-
cratic basis) if, for any finite A, B ⊂ N such that w(A) ≤ w(B), we have

∥

∥

∥

∥

∑

n∈A

ψn

∥

∥

∥

∥

≤ CD

∥

∥

∥

∥

∑

n∈B

ψn

∥

∥

∥

∥

.

Theorem 1.3.8. A basis Ψ is a w-greedy basis if and only if it is uncon-
ditional and w-democratic.

Proof. I We first prove the implication

unconditional + w-democratic ⇒ w-greedy.
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Let f be any function, or a function of the form (1.3.8) if infn ‖ψn‖ = 0.
Consider

Gm(f, Ψ) =
∑

n∈Q

cn(f)ψn =: SQ(f).

We take any finite set P ⊂ N satisfying w(P ) ≤ w(Q). Then our assumption
wn > 0, n ∈ N implies that either P = Q or Q \ P is non-empty. As in the
Introduction, let

EP (f, Ψ) := inf
{bn}

∥

∥

∥

∥

f −
∑

n∈P

bnψn

∥

∥

∥

∥

.

Then, by unconditionality of Ψ, we have (see (1.1.12))

‖f − SP (f)‖ ≤ (K + 1)EP (f, Ψ). (1.3.9)

This (with P = Q) completes the proof in the case σw
w(Q)(f, Ψ) = EQ(f, Ψ).

Suppose that σw
w(Q)(f, Ψ) < EQ(f, Ψ). Clearly, we may now consider only

those P that satisfy the following two conditions:

w(P ) ≤ w(Q) and EP (f, Ψ) < EQ(f, Ψ).

For P satisfying the above conditions we have Q \ P = ∅. We estimate

‖f − SQ(f)‖ ≤ ‖f − SP (f)‖ + ‖SP (f) − SQ(f)‖. (1.3.10)

We have

SP (f) − SQ(f) = SP\Q(f) − SQ\P (f). (1.3.11)

As for (1.3.9) we get

‖SQ\P (f)‖ ≤ KEP (f, Ψ). (1.3.12)

It remains to estimate ‖SP\Q(f)‖. By unconditionality and w-democracy
in the case of a real Banach space X, we have

‖SP\Q(f)‖ ≤ 2K max
n∈P\Q

|cn(f)|
∥

∥

∥

∥

∑

n∈P\Q

ψn

∥

∥

∥

∥

(1.3.13)

≤ 2KCD min
n∈Q\P

|cn(f)|
∥

∥

∥

∥

∑

n∈Q\P

ψn

∥

∥

∥

∥

≤ C(K)CD‖SQ\P (f)‖.

In the case of a complex Banach space X the above inequalities hold with
2K replaced by 4K. Combining (1.3.9)–(1.3.13), we complete the proof of
part I.

II We now prove the implication

w-greedy ⇒ unconditional + w-democratic.
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IIa We begin with the following one:

w-greedy ⇒ unconditional.

We will prove a slightly stronger statement.

Lemma 1.3.9. Let Ψ be a basis such that, for any f of the form (1.3.8),
we have

‖f − Gm(f, Ψ)‖ ≤ CEΛ(f, Ψ),

where

Gm(f, Ψ) =
∑

n∈Λ

cn(f)ψn.

Then Ψ is unconditional.

Proof. It is clear that it is sufficient to prove that there exists a constant
C0 such that, for any finite Λ and any f of the form (1.3.8), we have

‖SΛ(f)‖ ≤ C0‖f‖.
Let f and Λ be given and Λ ⊂ [1, M ]. Consider

fM := S[1,M ](f).

Then ‖fM‖ ≤ CB‖f‖. We take a b > max1≤n≤M |cn(f)| and define a new
function

g := fM − SΛ(fM ) + b
∑

n∈Λ

ψn.

Then

Gm(g, Ψ) = b
∑

n∈Λ

ψn, m := |Λ|,

and

EΛ(g, Ψ) ≤ ‖fM‖.
Thus,

‖fM − SΛ(fM )‖ = ‖g − Gm(g, Ψ)‖ ≤ CEΛ(g, Ψ) ≤ C‖fM‖.
Therefore,

‖SΛ(f)‖ = ‖SΛ(fM )‖ ≤ C0‖f‖.
IIb It remains to prove the implication

w-greedy ⇒ w-democratic.

First, let A, B ⊂ N, w(A) ≤ w(B), be such that A ∩ B = ∅. Consider

f :=
∑

n∈A

ψn + (1 + ǫ)
∑

n∈B

ψn, ǫ > 0.
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Then

Gm(f, Ψ) = (1 + ǫ)
∑

n∈B

ψn, m := |B|,

and

EA(f, Ψ) ≤
∥

∥

∥

∥

∑

n∈B

ψn

∥

∥

∥

∥

(1 + ǫ).

Therefore, by the w-greedy assumption we get
∥

∥

∥

∥

∑

n∈A

ψn

∥

∥

∥

∥

≤ C(1 + ǫ)

∥

∥

∥

∥

∑

n∈B

ψn

∥

∥

∥

∥

.

Now let A, B be any finite subsets of N for which w(A) ≤ w(B). Then,
using the unconditionality of Ψ proved in IIa and the above part of IIb, we
obtain

∥

∥

∥

∥

∑

n∈A

ψn

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

n∈A\B

ψn

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

n∈A∩B

ψn

∥

∥

∥

∥

≤ C

∥

∥

∥

∥

∑

n∈B\A

ψn

∥

∥

∥

∥

+ K

∥

∥

∥

∥

∑

n∈B

ψn

∥

∥

∥

∥

≤ C1

∥

∥

∥

∥

∑

n∈B

ψn

∥

∥

∥

∥

.

This completes the proof of Theorem 1.3.8.

Theorems 1.3.5 and 1.3.8 show that greedy = unconditional + demo-

cratic. We now show that unconditionality does not imply democracy, and
vice versa.

Unconditionality does not imply democracy. This follows from prop-
erties of the multivariate Haar system H2 = H × H defined as the tensor
product of the univariate Haar systems H (see (1.3.14) below).

Democracy does not imply unconditionality. Let X be the set of all
real sequences x = (x1, x2, . . .) such that

‖x‖X = sup
N∈N

∣

∣

∣

∣

N
∑

n=1

xn

∣

∣

∣

∣

is finite. Clearly, X equipped with the norm ‖ · ‖X is a Banach space. Let
ψk ∈ X, k = 1, 2, . . . , be defined as (ψk)n = 1 if n = k and (ψk)n = 0
otherwise. Let X0 denote the subspace of X generated by the elements ψk.
It is easy to see that {ψk} is a democratic basis in X0. However, it is not
an unconditional basis, since

∥

∥

∥

∥

m
∑

k=1

ψk

∥

∥

∥

∥

X

= m,
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but
∥

∥

∥

∥

m
∑

k=1

(−1)kψk

∥

∥

∥

∥

X

= 1.

We let Hp := {Hk,p}∞k=1 be the Haar basis H renormalized in Lp([0, 1)).
We define the multivariate Haar basis Hd

p to be the tensor product of the

univariate Haar bases: Hd
p := Hp × · · · × Hp;

Hn,p(x) := Hn1,p(x1) · · ·Hnd,p(xd), x = (x1, . . . , xd), n = (n1, . . . , nd).

Supports of functions Hn,p are arbitrary dyadic parallelepipeds (intervals).
It is known (see Temlyakov (2002a)) that the tensor product structure of
the multivariate wavelet bases makes them universal for approximation of
anisotropic smoothness classes with different anisotropy. It is also known
that the study of such bases is more difficult than the study of the univariate
bases. In many cases we need to develop new techniques and in some cases
we encounter new phenomena. For instance, it turns out that the democratic
property does not hold for the multivariate Haar basis Hd

p for p = 2. The
following relation is known for 1 < p < ∞:

sup
f∈Lp

‖f − Gm(f,Hd
p)‖p/σm(f,Hd

p) ≍ (log m)(d−1)|1/2−1/p|. (1.3.14)

The lower bound in (1.3.14) was proved by R. Hochmuth; the upper bound
in (1.3.14) was proved in the case d = 2, 4/3 ≤ p ≤ 4, and was conjectured
for all d, 1 < p < ∞, in Temlyakov (1998b). The conjecture was proved in
Wojtaszczyk (2000).

Let us return to the problem of finding a near-best m-term approximant
of f ∈ X with regard to a basis Ψ. This problem consists of two subprob-
lems. First, we need to identify a set Λm of m indices that can be used in
achieving near-best m-term approximation of f . Second, we need to find
the coefficients {ck}, k ∈ Λm, such that the approximant

∑

k∈Λ ckψk pro-
vides near-best approximation of f . It is clear from the properties of an
unconditional basis Ψ that, for any f ∈ X and any Λ, we have (see (1.1.12))

∥

∥

∥

∥

f −
∑

k∈Λ

ck(f, Ψ)ψk

∥

∥

∥

∥

≤ C inf
{ck}

∥

∥

∥

∥

f −
∑

k∈Λ

ckψk

∥

∥

∥

∥

.

Therefore, in the case of an unconditional basis Ψ the second subproblem
is easy: we can always choose the expansion coefficients ck(f, Ψ), k ∈ Λ.
Theorem 1.3.5 shows that if a basis Ψ is simultaneously unconditional and
democratic then the first subproblem is also easy: it follows from the def-
inition of greedy basis that the algorithm of choosing the m biggest in
absolute-value coefficients gives the set Λm.
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It would be very interesting to understand how we can find Λm in the
case when we only know that Ψ is unconditional. The following special
case of the above problem is of great interest: X = Lp([0, 1]d), d ≥ 2, Ψ is
the multivariate Haar basis Hd

p, 1 < p < ∞. It is known from Temlyakov
(1998b), Wojtaszczyk (2000) and Kamont and Temlyakov (2004) that the
function

µ(m,Hd
p) := sup

k≤m

(

sup
Λ:|Λ|=k

∥

∥

∥

∥

∑

n∈Λ

Hn,p

∥

∥

∥

∥

p

/ inf
Λ:|Λ|=k

∥

∥

∥

∥

∑

n∈Λ

Hn,p

∥

∥

∥

∥

p

)

plays a very important role in estimates of the m-term greedy approximation
in terms of the best m-term approximation. For instance (see Temlyakov
(1998b)),

‖f − G
Lp
m (f,Hd

p)‖p ≤ C(p, d)µ(m,Hd
p)σm(f,Hd

p)p, 1 < p < ∞. (1.3.15)

The following theorem gives, in particular, upper bounds for µ(m,Hd
p).

Theorem 1.3.10. Let 1 < p < ∞. Then, for any Λ, |Λ| = m, we have for
2 ≤ p < ∞

C1
p,dm

1/p min
n∈Λ

|cn| ≤
∥

∥

∥

∥

∑

n∈Λ

cnHn,p

∥

∥

∥

∥

p

≤ C2
p,dm

1/p(log m)h(p,d) max
n∈Λ

|cn|,

and for 1 < p ≤ 2

C3
p,dm

1/p(log m)−h(p,d) min
n∈Λ

|cn| ≤
∥

∥

∥

∥

∑

n∈Λ

cnHn,p

∥

∥

∥

∥

p

≤ C4
p,dm

1/p max
n∈Λ

|cn|,

where h(p, d) := (d − 1)|1/2 − 1/p|.
Theorem 1.3.10 for d = 1, 1 < p < ∞ was proved in Temlyakov (1998a),

and for d = 2, 4/3 ≤ p ≤ 4 it was proved in Temlyakov (1998b). Theo-
rem 1.3.10 in the general case was proved in Wojtaszczyk (2000). It is known
(Temlyakov 2002c) that the extra log factors in Theorem 1.3.10 are sharp.

Let Ψ be a normalized basis for Lp([0, 1)). For the space Lp([0, 1)d) we
define Ψd := Ψ × · · · × Ψ (d times), and

ψn(x) := ψn1(x1) · · ·ψnd
(xd), for x = (x1, . . . , xd), n = (n1, . . . , nd).

In Kerkyacharian et al. (2006) we proved the following theorem using a
proof whose structure is similar to that from Wojtaszczyk (2000).

Theorem 1.3.11. Let 1 < p < ∞ and let Ψ be a greedy basis for
Lp([0, 1)). Then, for any Λ, |Λ| = m, we have for 2 ≤ p < ∞

C5
p,dm

1/p min
n∈Λ

|cn| ≤
∥

∥

∥

∥

∑

n∈Λ

cnψn

∥

∥

∥

∥

p

≤ C6
p,dm

1/p(log m)h(p,d) max
n∈Λ

|cn|,
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and for 1 < p ≤ 2

C7
p,dm

1/p(log m)−h(p,d) min
n∈Λ

|cn| ≤
∥

∥

∥

∥

∑

n∈Λ

cnψn

∥

∥

∥

∥

p

≤ C8
p,dm

1/p max
n∈Λ

|cn|,

where h(p, d) := (d − 1)|1/2 − 1/p|.
Inequality (1.3.15) was extended in Wojtaszczyk (2000) to a normalized

unconditional basis Ψ for X instead of Hd
p for Lp([0, 1)d). Therefore, as a

corollary of Theorem 1.3.11 we obtain the following inequality for a greedy
basis Ψ (for Lp([0, 1)))

‖f − G
Lp
m (f, Ψd)‖p ≤ C(Ψ, d, p)(log m)h(p,d)σm(f, Ψd)p, 1 < p < ∞.

(1.3.16)

1.4. Quasi-greedy and almost greedy bases

In Section 1.3 we imposed the condition

inf
k
‖ψk‖ > 0 (1.4.1)

on a basis Ψ, to define Gm(f, Ψ) for all f ∈ X. We noticed that in the
case of a greedy basis this condition is always satisfied. In this section we
assume that (1.4.1) is satisfied.

Let us discuss the question of weakening the requirement that a basis be
a greedy basis. We begin with a concept of quasi-greedy basis that was
introduced in Konyagin and Temlyakov (1999a).

Definition 1.4.1. We call a basis Ψ a quasi-greedy basis if, for every
f ∈ X and every permutation ρ ∈ D(f), we have

‖Gm(f, Ψ, ρ)‖X ≤ C‖f‖X (1.4.2)

with a constant C independent of f , m, and ρ.

It is clear that (1.4.2) is weaker then (1.3.6). Wojtaszczyk (2000) proved
the following theorem.

Theorem 1.4.2. A basis Ψ is quasi-greedy if and only if, for any f ∈ X
and any ρ ∈ D(f), we have

‖f − Gm(f, Ψ, ρ)‖ → 0 as m → ∞. (1.4.3)

Theorem 1.4.2 allows us to use (1.4.3) as an equivalent definition of a
quasi-greedy basis. We give one more equivalent definition of a quasi-greedy
basis.

Definition 1.4.3. We say that a basis Ψ is quasi-greedy if there exists a
constant CQ such that, for any f ∈ X and any finite set of indices Λ having
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the property

min
k∈Λ

|ck(f)| ≥ max
k/∈Λ

|ck(f)|, (1.4.4)

we have

‖SΛ(f, Ψ)‖ ≤ CQ‖f‖. (1.4.5)

It is clear that for elements f with the unique decreasing rearrangement
of coefficients (#D(f) = 1), inequalities (1.4.2) and (1.4.5) are equivalent.
By slightly modifying the coefficients and using the continuity argument we
deduce that (1.4.2) and (1.4.5) are equivalent for general f .

We now continue a discussion from Section 1.3 of relations between the
following concepts: greedy basis, unconditional basis, democratic basis, and
quasi-greedy basis. Theorem 1.3.5 states that greedy = unconditional +
democratic. It is clear from the definition of quasi-greedy basis that an
unconditional basis is always a quasi-greedy basis. We now give an example
from Konyagin and Temlyakov (1999a) of a basis that is quasi-greedy and
democratic (even superdemocratic) and is not an unconditional basis.

It is clear that an unconditional and democratic basis Ψ satisfies the
following inequality:

∥

∥

∥

∥

∑

k∈P

θkψk

∥

∥

∥

∥

≤ DS

∥

∥

∥

∥

∑

k∈Q

ǫkψk

∥

∥

∥

∥

, (1.4.6)

for any two finite sets P and Q, |P | = |Q|, and any choices of signs θk = ±1,
k ∈ P , and ǫk = ±1, k ∈ Q.

Definition 1.4.4. We say that a basis Ψ is a superdemocratic basis if it
satisfies (1.4.6).

Theorem 1.3.5 implies that a greedy basis is a superdemocratic one. Now
we will construct an example of a superdemocratic quasi-greedy basis which
is not an unconditional basis, and therefore, by Theorem 1.3.5, is not a
greedy basis.

Let X be the set of all real sequences x = (x1, x2, . . .) ∈ l2 such that

‖x‖1 = sup
N∈N

∣

∣

∣

∣

N
∑

n=1

xn/
√

n

∣

∣

∣

∣

is finite. Clearly, X equipped with the norm

‖ · ‖ = max(‖ · ‖l2 , ‖ · ‖1)

is a Banach space. Let ψk ∈ X, k = 1, 2, . . . , be defined as (ψk)n = 1 if
n = k and (ψk)n = 0 otherwise. Let X0 denote the subspace of X generated
by the elements ψk. It is easy to see that Ψ = {ψk} is a democratic basis in
X0. Moreover, it is superdemocratic: for any k1, . . . , km and for any choice
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of signs,

√
m ≤

∥

∥

∥

∥

m
∑

j=1

±ψkj

∥

∥

∥

∥

< 2
√

m. (1.4.7)

Indeed, we have
∥

∥

∥

∥

m
∑

j=1

±ψkj

∥

∥

∥

∥

l2

=
√

m,

∥

∥

∥

∥

m
∑

j=1

±ψkj

∥

∥

∥

∥

1

≤
m

∑

j=1

1/
√

j < 2
√

m,

and (1.4.7) follows. However, Ψ is not an unconditional basis since, for
m ≥ 2,

∥

∥

∥

∥

m
∑

k=1

ψk/
√

k

∥

∥

∥

∥

≥
m

∑

k=1

1/k ≍ log m,

but
∥

∥

∥

∥

m
∑

k=1

(−1)kψk/
√

k

∥

∥

∥

∥

≍
√

log m.

We now prove that the basis Ψ constructed above is a quasi-greedy basis.
Assume ‖f‖ = 1. Then, by definition of ‖ · ‖ we have

∞
∑

k=1

|ck(f)|2 ≤ 1, (1.4.8)

and for any M
∣

∣

∣

∣

M
∑

k=1

ck(f)k−1/2

∣

∣

∣

∣

≤ 1. (1.4.9)

It is clear that for any Λ we have

‖SΛ(f, Ψ)‖l2 ≤ ‖f‖l2 ≤ 1. (1.4.10)

We now estimate ‖SΛ(f, Ψ)‖1. Let Λ be any finite set of indices satisfying
(1.4.4), and let

α := min
k∈Λ

|ck(f)|.

If α = 0, then SΛ(f, Ψ) = f and (1.4.5) holds. Therefore consider α > 0,
and, for any N , let

Λ+(N) := {k ∈ Λ : k > N}, Λ−(N) := {k ∈ Λ : k ≤ N}.
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By Hölder’s inequality we have, for any N ,

∑

k∈Λ+(N)

|ck(f)|k−1/2 ≤
(

∑

k∈Λ+(N)

|ck(f)|3/2

)2/3(
∑

k>N

k−3/2

)1/3

(1.4.11)

≪ N−1/6

(

∑

k∈Λ+(N)

|ck(f)|3/2(|ck(f)|/α)1/2

)2/3

≪ (α2N)−1/6.

Choose Nα := [α−2] + 1. Then, for any M ≤ Nα we have by (1.4.9) that

∣

∣

∣

∣

∑

k∈Λ−(M)

ck(f)k−1/2

∣

∣

∣

∣

≤
∣

∣

∣

∣

M
∑

k=1

ck(f)k−1/2

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

k/∈Λ−(M),k≤M

ck(f)k−1/2

∣

∣

∣

∣

≤ 1 + α
M
∑

k=1

k−1/2 ≤ 1 + 2αM1/2 ≪ 1. (1.4.12)

For M > Nα, we get using (1.4.11) and (1.4.12)
∣

∣

∣

∣

∑

k∈Λ−(M)

ck(f)k−1/2

∣

∣

∣

∣

≤
∣

∣

∣

∣

∑

k∈Λ−(Nα)

ck(f)k−1/2

∣

∣

∣

∣

+
∑

k∈Λ+(Nα)

|ck(f)|k−1/2 ≪ 1.

Thus

‖SΛ(f, Ψ)‖1 ≤ C,

which completes the proof.
The above example and Theorem 1.3.5 show that a quasi-greedy basis

is not necessarily a greedy basis. Further results on quasi-greedy bases
can be found in Wojtaszczyk (2000) and Dilworth, Kalton, Kutzarova and
Temlyakov (2003).

The above discussion shows that a quasi-greedy basis is not necessarily
an unconditional basis. However, quasi-greedy bases have some properties
that are close to those of unconditional bases. We formulate two of them
(see, for instance, Konyagin and Temlyakov (2002)).

Lemma 1.4.5. Let Ψ be a quasi-greedy basis. Then, for any two finite
sets of indices A ⊆ B and coefficients 0 < t ≤ |aj | ≤ 1, j ∈ B, we have

∥

∥

∥

∥

∑

j∈A

ajψj

∥

∥

∥

∥

≤ C(X, Ψ, t)

∥

∥

∥

∥

∑

j∈B

ajψj

∥

∥

∥

∥

.

It will be convenient to define the quasi-greedy constant K to be the least
constant such that

‖Gm(f)‖ ≤ K‖f‖ and ‖f − Gm(f)‖ ≤ K‖f‖, f ∈ X.
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Lemma 1.4.6. Suppose Ψ is a quasi-greedy basis with a quasi-greedy
constant K. Then, for any real numbers aj and any finite set of indices P ,
we have

(4K2)−1 min
j∈P

|aj |
∥

∥

∥

∥

∑

j∈P

ψj

∥

∥

∥

∥

≤
∥

∥

∥

∥

∑

j∈P

ajψj

∥

∥

∥

∥

≤ 2K max
j∈P

|aj |
∥

∥

∥

∥

∑

j∈P

ψj

∥

∥

∥

∥

.

We note that the mth greedy approximant Gm(x,Ψ) changes if we renor-
malize the basis Ψ (replace it by a basis {λnψn}). This gives us more flex-
ibility in adjusting a given basis Ψ for greedy approximation. Let us make
one observation from Konyagin and Temlyakov (2003a) along these lines.

Proposition 1.4.7. Let Ψ = {ψn}∞n=1 be a normalized basis for a Banach
space X. Then the basis {en}∞n=1, en := 2nψn, n = 1, 2, . . . is a quasi-greedy
basis in X.

We proceed to an intermediate concept of almost greedy basis. This con-
cept was introduced and studied in Dilworth et al. (2003). Let

f =

∞
∑

k=1

ck(f)ψk.

We define the following expansional best m-term approximation of f :

σ̃m(f) := σ̃m(f, Ψ) := inf
Λ,|Λ|=m

∥

∥

∥

∥

f −
∑

k∈Λ

ck(f)ψk

∥

∥

∥

∥

.

It is clear that

σm(f, Ψ) ≤ σ̃m(f, Ψ).

It is also clear that for an unconditional basis Ψ we have

σ̃m(f, Ψ) ≤ Cσm(f, Ψ).

Definition 1.4.8. We call a basis Ψ an almost greedy basis if, for every
f ∈ X, there exists a permutation ρ ∈ D(f) such that we have the inequality

‖f − Gm(f, Ψ, ρ)‖X ≤ Cσ̃m(f, Ψ)X , (1.4.13)

with a constant independent of f and m.

The following proposition follows from the proof of Theorem 3.3 of Dil-
worth et al. (2003) (see Theorem 1.4.10 below).

Proposition 1.4.9. If Ψ is an almost greedy basis then (1.4.13) holds for
any permutation ρ ∈ D(f).

The following characterization of almost greedy bases was obtained in
Dilworth et al. (2003).
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Theorem 1.4.10. Suppose Ψ is a basis of a Banach space. The following
are equivalent.

A Ψ is almost greedy.

B Ψ is quasi-greedy and democratic.

C For any (respectively, every) λ > 1 there is a constant C = Cλ such
that

‖f − G[λm](f, Ψ)‖ ≤ Cλσm(f, Ψ).

In order to give the reader an idea of relations between σ̃ and σ we present
an estimate for σ̃n(f, Ψ) in terms of σm(f, Ψ) for a quasi-greedy basis Ψ.
For a basis Ψ we define the fundamental function

ϕ(m) := sup
|A|≤m

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

.

We also need the following function:

φ(m) := inf
|A|=m

∥

∥

∥

∥

∑

k∈A

ψk

∥

∥

∥

∥

.

The following inequality was obtained in Dilworth et al. (2003).

Theorem 1.4.11. Let Ψ be a quasi-greedy basis. Then, for any m and r
there exists a set E, |E| ≤ m + r such that

‖f − SE(f, Ψ)‖ ≤ C

(

1 +
ϕ(m)

φ(r + 1)

)

σm(f, Ψ).

In Section 1.3, in addition to bases Ψ satisfying (1.4.1), we discussed a
more general case that included bases satisfying (1.3.3). In the latter case
we defined the greedy algorithm Gm(f, Ψ) for functions f of the form (1.3.4).
We gave a definition of a greedy basis in the general case, which included
those bases satisfying (1.3.3). However, the characterization of greedy bases
given by Theorem 1.3.5 excluded bases satisfying (1.3.3). We note that a
similar attempt to include bases Ψ satisfying (1.3.3) into the consideration
of quasi-greedy bases does not work. Indeed, let Ψ be a normalized un-
conditional basis and consider a renormalized basis Ψ′ := {ψ′

k := k−3ψk}.
Clearly, Ψ′ is also an unconditional basis, and therefore inequality (1.4.2) is
satisfied for any f of the form (1.3.4). However, for the function

f :=
∞

∑

k=1

k−2ψk =
∞

∑

k=1

kψ′
k,

we cannot apply the algorithm Gm(·, Ψ′) because the expansion coefficients
are not bounded.
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1.5. Weak Greedy Algorithms with respect to bases

The greedy approximant Gm(f, Ψ) considered in Sections 1.3 and 1.4 was
defined to be the sum

m
∑

j=1

ckj (f, Ψ)ψkj

of the expansion terms with the m biggest coefficients in absolute value (see
(1.3.2)). In this section we discuss a more flexible way to construct a greedy
approximant. The rule for choosing the expansion terms for approximation
will be weaker than in the greedy algorithm Gm(·, Ψ). Instead of taking m
terms with the biggest coefficients we now take m terms with near-biggest
coefficients. We proceed to a formal definition of the Weak Greedy Algo-
rithm with regard to a basis Ψ. We assume here that Ψ satisfies (1.4.1).

Let t ∈ (0, 1] be a fixed parameter. For a given basis Ψ and a given f ∈ X,
let Λm(t) be any set of m indices such that

min
k∈Λm(t)

|ck(f, Ψ)| ≥ t max
k/∈Λm(t)

|ck(f, Ψ)|, (1.5.1)

and define

Gt
m(f) := Gt

m(f, Ψ) :=
∑

k∈Λm(t)

ck(f, Ψ)ψk.

We call it the Weak Greedy Algorithm (WGA) with the weakness sequence
{t} (the weakness parameter t). We note that the WGA with regard to
a basis was introduced in the very first paper (see Temlyakov (1998a)) on
greedy bases. It is clear that G1

m(f, Ψ) = Gm(f, Ψ). It is also clear that, in
the case t < 1, we have more flexibility in building a weak greedy approx-
imant Gt

m(f, Ψ) than in building Gm(f, Ψ): it is one advantage of a weak
greedy approximant Gt

m(f, Ψ). The question is: How much does this flexi-
bility affect efficiency of the algorithm? Surprisingly, it turns out that the
effect is minimal: it is only reflected in a multiplicative constant (see below).

We begin our discussion with the case when Ψ is a greedy basis. It was
proved in Temlyakov (1998a) that, when X = Lp, 1 < p < ∞, and Ψ is the
Haar system Hp normalized in Lp, we have

‖f − Gt
m(f,Hp)‖Lp ≤ C(p, t)σm(f,Hp)Lp , (1.5.2)

for any f ∈ Lp. It was noted in Konyagin and Temlyakov (2002) that the
proof of (1.5.2) from Temlyakov (1998a) works for any greedy basis, not
merely the Haar system Hp. Thus, we have the following result.

Theorem 1.5.1. For any greedy basis Ψ of a Banach space X, and any
t ∈ (0, 1], we have

‖f − Gt
m(f, Ψ)‖X ≤ C(Ψ, t)σm(f, Ψ)X , (1.5.3)
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for each f ∈ X.

We now consider the Weak Greedy Algorithm with regard to a quasi-
greedy basis Ψ. It was proved in Konyagin and Temlyakov (2002) that the
weak greedy approximant has properties similar to the greedy approximant.

Theorem 1.5.2. Let Ψ be a quasi-greedy basis. Then, for a fixed t ∈ (0, 1]
and any m, we have for any f ∈ X

‖Gt
m(f, Ψ)‖ ≤ C(t)‖f‖. (1.5.4)

The following theorem from Konyagin and Temlyakov (2002) is essentially
due to Wojtaszczyk (2000).

Theorem 1.5.3. Let Ψ be a quasi-greedy basis for a Banach space X.
Then, for any fixed t ∈ (0, 1], we have for each f ∈ X that

Gt
m(f, Ψ) → f as m → ∞.

Let us now proceed to an almost greedy basis Ψ. The following result
was established in Konyagin and Temlyakov (2002).

Theorem 1.5.4. Let Ψ be an almost greedy basis. Then, for t ∈ (0, 1] we
have for any m

‖f − Gt
m(f, Ψ)‖ ≤ C(t)σ̃m(f, Ψ). (1.5.5)

Proof. We drop Ψ from the notation for the sake of brevity. Take any
ǫ > 0 and find P , |P | = m such that

‖f − SP (f)‖ ≤ σ̃m(f) + ǫ.

Let Q := Λm(t) with Λm(t) from the definition of Gt
m(f). Then

‖f − Gt
m(f)‖ ≤ ‖f − SP (f)‖ + ‖SP (f) − SQ(f)‖. (1.5.6)

We have

SP (f) − SQ(f) = SP\Q(f) − SQ\P (f). (1.5.7)

Let us first estimate ‖SQ\P (f)‖. Denote f1 := f − SP (f). Then

SQ\P (f) = SQ\P (f1).

Next,

min
k∈Q\P

|ck(f1)| = min
k∈Q\P

|ck(f)| ≥ min
k∈Q

|ck(f)|

≥ t max
k/∈Q

|ck(f)| ≥ t max
k/∈Q

|ck(f1)| = t max
k/∈Q\P

|ck(f1)|.

Thus Q \ P = Λn(t) for f1 with n := |Q \ P |. By Theorem 1.5.2 we have

‖SQ\P (f)‖ ≤ C1(t)‖f1‖. (1.5.8)
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We now estimate ‖SP\Q(f)‖. From the definition of Q we easily derive

at ≤ b, where a := max
k∈P\Q

|ck(f)|, b := min
k∈Q\P

|ck(f)|. (1.5.9)

By Lemma 1.4.6 (see Lemma 2.1 from Dilworth et al. (2003)),

‖SP\Q(f)‖ ≤ 2Ka

∥

∥

∥

∥

∑

k∈P\Q

ψk

∥

∥

∥

∥

(1.5.10)

and (see Lemma 2.2 from Dilworth et al. (2003))

‖SQ\P (f)‖ ≥ (4K2)−1b

∥

∥

∥

∥

∑

k∈Q\P

ψk

∥

∥

∥

∥

. (1.5.11)

By Theorem 1.4.10 an almost greedy basis is a democratic basis. Thus we
obtain

∥

∥

∥

∥

∑

k∈P\Q

ψk

∥

∥

∥

∥

≤ D

∥

∥

∥

∥

∑

k∈Q\P

ψk

∥

∥

∥

∥

. (1.5.12)

Combining (1.5.6)–(1.5.12) we obtain (1.5.5). Theorem 1.5.4 is proved.

We now discuss the stability of the greedy-type property of a basis. Let
0 < a ≤ λk ≤ b < ∞, k = 1, 2, . . . and for a basis Ψ = {ψk} consider
Ψλ := {λkψk}. The following theorem is from Konyagin and Temlyakov
(2002). We note that the case for quasi-greedy bases was proved in Woj-
taszczyk (2000).

Theorem 1.5.5. Let a basis Ψ have one of the following properties:

(1) greedy,

(2) almost greedy,

(3) quasi-greedy.

Then the basis Ψλ has the same property.

Proof. Let f ∈ X and

f =
∑

k

ck(f)ψk =
∑

k

ck(f)λ−1
k λkψk.

Consider

Gm(f, Ψλ) =
∑

k∈Λm

(ck(f)λ−1
k )λkψk.

Then, using λk ∈ [a, b] and the definition of the Gm(f, Ψλ), we obtain

min
k∈Λm

|ck(f)| ≥ a min
k∈Λm

|ck(f)|λ−1
k ≥ a max

k/∈Λm

|ck(f)|λ−1
k ≥ a

b
max
k/∈Λm

|ck(f)|.
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Therefore, the set Λm can be interpreted as a Λm(t) with t = a/b with
regard to the basis Ψ. It remains to apply the corresponding results for
Gt

m(f, Ψ): (1.5.3) in case (1), (1.5.4) in case (3), and (1.5.5) in case (2).
This completes the proof of Theorem 1.5.5.

Kamont and Temlyakov (2004) studied the following modification of the
above weak-type greedy algorithm as a way to further weaken restriction
(1.5.1). We call this modification the Weak Greedy Algorithm (WGA) with
a weakness sequence τ = {tk}. Let a weakness sequence τ := {tk}∞k=1,
tk ∈ [0, 1], k = 1, . . . be given. We define the WGA by induction. We take
an element f ∈ X, and at the first step we let

Λ1(τ) := {n1}, Gτ
1(f, Ψ) := cn1ψn1 ,

with any n1 satisfying

|cn1 | ≥ t1 max
n

|cn|,

where we write cn := cn(f, Ψ) for brevity. Assume we have already defined

Gτ
m−1(f, Ψ) := GX,τ

m−1(f, Ψ) :=
∑

n∈Λm−1(τ)

cnψn.

Then, at the mth step we define

Λm(τ) := Λm−1(τ) ∪ {nm}, Gτ
m(f, Ψ) := GX,τ

m (f, Ψ) :=
∑

n∈Λm(τ)

cnψn,

with any nm /∈ Λm−1(τ) satisfying

|cnm | ≥ tm max
n/∈Λm−1(τ)

|cn|.

Thus, for f ∈ X the WGA builds a rearrangement of a subsequence of
the expansion (1.3.1). If Ψ is an unconditional basis then we also have the
limit Gτ

m(f, Ψ) → f∗. It is clear that in this case f∗ = f if and only if
the sequence {nk}∞k=1 contains indices of all non-zero cn(f, Ψ). We say that
the WGA corresponding to Ψ and τ is convergent if, for any realization
Gτ

m(f, Ψ), we have

‖f − Gτ
m(f, Ψ)‖ → 0 as m → ∞,

for all f ∈ X.
We formulate here only one theorem from Kamont and Temlyakov (2004).

Theorem 1.5.6. Let 2 ≤ p < ∞, d ≥ 1 and let Ψ be a normalized
unconditional basis in Lp([0, 1]d). Let τ = {tn : n ≥ 1} be a weakness
sequence. Then the WGA corresponding to Ψ and τ converges if and only
if τ ∈ lp.
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1.6. Thresholding and minimal systems

In this section we briefly discuss some further generalizations. Here, we
assume that X is a quasi-Banach space and replace a basis by a complete
minimal system. In addition, we consider the Weak Thresholding Algorithm
and prove that its convergence is equivalent to convergence of the Weak
Greedy Algorithm (see Proposition 1.6.3). Thresholding algorithms are very
useful in statistics (see, for instance, Donoho and Johnstone (1994)).

Let X be a quasi-Banach space (real or complex) with the quasi-norm ‖·‖
such that for all x, y ∈ X we have ‖x+y‖ ≤ α(‖x‖+‖y‖) and ‖tx‖ = |t|‖x‖.
It is well known (see Kalton, Beck and Roberts (1984, Lemma 1.1)) that
there is a p, 0 < p ≤ 1, such that

∥

∥

∥

∥

∑

n

xn

∥

∥

∥

∥

≤ 41/p

(

∑

n

‖xn‖p

)1/p

. (1.6.1)

Let {en} ⊂ X be a complete minimal system in X with the conjugate
(dual) system {e∗n} ⊂ X∗ (e∗n(en) = 1, e∗n(ek) = 0, k = n). We assume that
supn ‖e∗n‖ < ∞. This implies that for each x ∈ X we have

lim
n→∞

e∗n(x) = 0. (1.6.2)

Any element x ∈ X has a formal expansion

x ∼
∑

n

e∗n(x)en, (1.6.3)

and various types of convergence of the series (1.6.3) can be studied. In this
section we deal with greedy-type approximations with regard to the system
{en}. We note that in this section we use the notation x and {en} for an
element and for a system, respectively, differing from the notation f and Ψ
used in previous sections, to emphasize that we are now in a more general
setting. It will be convenient for us to define a unique ‘greedy ordering’ in
this section. For any x ∈ X we define the greedy ordering for x as the map
ρ : N → N for which {j : e∗j (x) = 0} ⊂ ρ(N), and such that, if j < k, then
either |e∗ρ(j)(x)| > |e∗ρ(k)(x)| or |e∗ρ(j)(x)| = |e∗ρ(k)(x)| and ρ(j) < ρ(k). The

mth greedy approximation is given by

Gm(x) := Gm(x, {en}) :=
m

∑

j=1

e∗ρ(j)(x)eρ(j).

The system {en} is a quasi-greedy system (Konyagin and Temlyakov
1999a) if there exists a constant C such that ‖Gm(x)‖ ≤ C‖x‖ for all x ∈ X
and m ∈ N. Wojtaszczyk (2000) proved that these are precisely the systems
for which limm→∞ Gm(x) = x for all x. If, as in Section 1.4, a quasi-greedy
system {en} is a basis, then we say that {en} is a quasi-greedy basis. As we
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mentioned above, it is clear that any unconditional basis is a quasi-greedy
basis. We note that there are conditional quasi-greedy bases {en} in some
Banach spaces. Hence, for such a basis {en} there exists a permutation
of {en} which forms a quasi-greedy system but not a basis. This remark
justifies the study of the class of quasi-greedy systems rather than the class
of quasi-greedy bases.

Greedy approximations are close to thresholding approximations (some-
times they are called thresholding greedy approximations). Thresholding
approximations are defined by

Tǫ(x) :=
∑

|e∗j (x)|≥ǫ

e∗j (x)ej , ǫ > 0.

Clearly, for any ǫ > 0 there exists an m such that Tǫ(x) = Gm(x). Therefore,
if {en} is a quasi-greedy system then

∀x ∈ X lim
ǫ→0

Tǫ(x) = x. (1.6.4)

Conversely, following the Remark from Wojtaszczyk (2000, pp. 296–297), it
is easy to show that condition (1.6.4) implies that {en} is a quasi-greedy
system.

As in Section 1.5, one can define the Weak Thresholding Approximation.
Fix t ∈ (0, 1). For ǫ > 0 let

Dt,ǫ(x) := {j : tǫ ≤ |e∗j (x)| < ǫ}.
The Weak Thresholding Approximations are defined as all possible sums

Tǫ,D(x) =
∑

|e∗j (x)|≥ǫ

e∗j (x)ej +
∑

j∈D

e∗j (x)ej ,

where D ⊆ Dt,ǫ(x). We say that the Weak Thresholding Algorithm con-
verges for x ∈ X, and write x ∈ WT{en}(t) if, for any D(ǫ) ⊆ Dt,ǫ,

lim
ǫ→0

Tǫ,D(ǫ)(x) = x.

It is clear that the above relation is equivalent to

lim
ǫ→0

sup
D⊆Dt,ǫ(x)

‖x − Tǫ,D(x)‖ = 0.

We proved in Konyagin and Temlyakov (2003a) (see Theorem 1.6.1 below)
that the set WT{en}(t) does not depend on t ∈ (0, 1). Therefore, we can
drop t from the notation: WT{en} = WT{en}(t).

It turns out that the Weak Thresholding Algorithm has more regularity
than the Thresholding Algorithm: we will see that the set WT{en} is linear.
On the other hand, by ‘weakening’ the Thresholding Algorithm (making
convergence stronger), we do not narrow the convergence set too much. It
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is known that for many natural classes of sets Y ⊆ X the convergence of
Tǫ(x) to x for all x ∈ Y is equivalent to the condition Y ⊆ WT{en}. In
particular, it can be derived from Wojtaszczyk (2000, Proposition 3) that
the above two conditions are equivalent for Y = X.

We suppose that X and {en} satisfy the conditions stated in the beginning
of this section. The following two theorems were proved in Konyagin and
Temlyakov (2003a).

Theorem 1.6.1. Let t, t′ ∈ (0, 1), x ∈ X. Then the following conditions
are equivalent.

(1) limǫ→0 supD⊆Dt,ǫ(x) ‖Tǫ,D(x) − x‖ = 0.

(2) limǫ→0 Tǫ(x) = x and

lim
ǫ→0

sup
D⊆Dt,ǫ(x)

∥

∥

∥

∥

∑

j∈D

e∗j (x)ej

∥

∥

∥

∥

= 0. (1.6.5)

(3) limǫ→0 Tǫ(x) = x and

lim
ǫ→0

sup
|aj |≤1(j∈Dt,ǫ(x))

∥

∥

∥

∥

∑

j∈Dt,ǫ(x)

aje
∗
j (x)ej

∥

∥

∥

∥

= 0. (1.6.6)

(4) limǫ→0 Tǫ(x) = x and

lim
ǫ→0

sup
|bj |<ǫ(j:|e∗j (x)|≥ǫ)

∥

∥

∥

∥

∑

j:|e∗j (x)|≥ǫ

bjej

∥

∥

∥

∥

= 0. (1.6.7)

(5) limǫ→0 supD⊆Dt′,ǫ(x) ‖Tǫ,D(x) − x‖ = 0.

So, the set WT{en}(t) defined above is indeed independent of t ∈ (0, 1).

Theorem 1.6.2. The set WT{en} is linear.

Let us discuss relations between the Weak Thresholding Algorithm Tǫ,D(x)
and the Weak Greedy Algorithm Gt

m(x). We define Gt
m(x) with regard to a

minimal system {en} in the same way as it was defined for a basis Ψ. For a
given system {en} and t ∈ (0, 1], we denote for x ∈ X and m ∈ N by Wm(t)
any set of m indices such that

min
j∈Wm(t)

|e∗j (x)| ≥ t max
j /∈Wm(t)

|e∗j (x)|, (1.6.8)

and define

Gt
m(x) := Gt

m(x, {en}) := SWm(t)(x) :=
∑

j∈Wm(t)

e∗j (x)ej .

It is clear that for any t ∈ (0, 1] and any D ⊆ Dt,ǫ(x) there exist m and
Wm(t) satisfying (1.6.8) such that

Tǫ,D(x) = SWm(t)(x). (1.6.9)
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Thus the convergence Gt
m(x) → x as m → ∞ implies the convergence

Tǫ,D(x) → x as ǫ → 0 for any t ∈ (0, 1]. We will now prove (see Konyagin
and Temlyakov (2003a, Proposition 2.2)) that for t ∈ (0, 1) the inverse is
also true.

Proposition 1.6.3. Let t ∈ (0, 1) and x ∈ X. Then the following two
conditions are equivalent:

lim
ǫ→0

sup
D⊆Dt,ǫ(x)

‖Tǫ,D(x) − x‖ = 0, (1.6.10)

lim
m→∞

‖Gt
m(x) − x‖ = 0, (1.6.11)

for any realization Gt
m(x).

Proof. The implication (1.6.11) ⇒ (1.6.10) is simple and follows from the
remark following (1.6.9). We prove that (1.6.10) ⇒ (1.6.11). Let

ǫm := max
j /∈Wm(t)

|e∗j (x)|.

Clearly ǫm → 0 as m → ∞. We have

Gt
m(x) = T2ǫm(x) +

∑

j∈Dm

e∗j (x)ej , (1.6.12)

with Dm having the following property: for any j ∈ Dm,

tǫm ≤ |e∗j (x)| < 2ǫm.

Thus, by condition (5) from Theorem 1.6.1, for t′ = t/2 we obtain (1.6.11).
Proposition 1.6.3 is now proved.

Proposition 1.6.3 and Theorem 1.6.1 imply that the convergence set of the
Weak Greedy Algorithm Gt

m(·) does not depend on t ∈ (0, 1) and coincides
with WT{en}. By Theorem 1.6.2 this set is a linear set.

Let us make a comment on the case t = 1 that is not covered by Propo-
sition 1.6.3. It is clear that Tǫ(x) = Gm(x) with some m, and therefore
Gm(x) → x as m → ∞ implies Tǫ(x) → x as ǫ → 0. It is also not difficult to
understand that, in general, Tǫ(x) → x as ǫ → 0 does not imply Gm(x) → x
as m → ∞. This can be done, for instance, by considering the trigonometric
system in the space Lp, p = 2, and using the Rudin–Shapiro polynomials
(see Temlyakov (1998c)). However, if, for the trigonometric system, we put
the Fourier coefficients with equal absolute values in a natural order (say,
lexicographic), then, in the case 1 < p < ∞, by Riesz’s theorem we obtain
convergence of Gm(f) from convergence of Tǫ(f). Results from Konyagin
and Skopina (2001) show that the situation is different for p = 1. In this
case the natural order does not help to derive convergence of Gm(f) from
convergence of Tǫ(f).
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1.7. Greedy approximation with respect to the

trigonometric system

The first results (see Theorem 1.3.1) on greedy approximation with regard
to bases showed that the Haar basis and other bases similar to it are very
well designed for greedy approximation. In this section we discuss another
classical system, namely, the trigonometric system from the point of view of
greedy approximation. It is well known that the trigonometric system is not
an unconditional basis for Lp, p = 2. Therefore, by Theorem 1.3.5 it is not
a greedy basis for Lp, p = 2. In this section we mostly discuss convergence
properties of the Weak Greedy Algorithm with regard to the trigonometric
system. It is a non-trivial problem. We will demonstrate how it relates to
some deep results in harmonic and functional analysis.

Consider a periodic function f ∈ Lp(T
d), 1 ≤ p ≤ ∞, (L∞(Td) = C(Td)),

defined on the d-dimensional torus T
d. Let a number m ∈ N and a number

t ∈ (0, 1] be given, and let Λm be a set of k ∈ Z
d with the properties

min
k∈Λm

|f̂(k)| ≥ t max
k/∈Λm

|f̂(k)|, |Λm| = m, (1.7.1)

where

f̂(k) := (2π)−d

∫

Td

f(x)e−i(k,x) dx

is a Fourier coefficient of f . We define

Gt
m(f) := Gt

m(f, T d) := SΛm(f) :=
∑

k∈Λm

f̂(k)ei(k,x),

and call it an mth weak greedy approximant of f with regard to the trigono-
metric system T d := {ei(k,x)}k∈Zd , T := T 1. We write Gm(f) = G1

m(f)
and call it an mth greedy approximant. Clearly, an mth weak greedy ap-
proximant and even an mth greedy approximant may not be unique. In
this section we do not impose any extra restrictions on Λm in addition to
(1.7.1). Thus, theorems formulated below hold for any choice of Λm satisfy-
ing (1.7.1), or, in other words, for any realization Gt

m(f) of the weak greedy
approximation.

We will discuss in detail only results concerning convergence of the WGA
with regard to the trigonometric system. T. W. Körner (1996), answering a
question raised by Carleson and Coifman, constructed a function from L2(T)
and then, in Körner (1999), a continuous function such that {Gm(f, T )}
diverges almost everywhere. It was proved in Temlyakov (1998c) for p = 2,
and in Cordoba and Fernandez (1998) for p < 2, that there exists an f ∈
Lp(T) such that {Gm(f, T )} does not converge in Lp. It was remarked
in Temlyakov (2003a) that the method from Temlyakov (1998c) gives a
little more.
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(1) There exists a continuous function f such that {Gm(f, T )} does not
converge in Lp(T) for any p > 2.

(2) There exists a function f that belongs to any Lp(T), p < 2, such that
{Gm(f, T )} does not converge in measure.

Thus the above negative results show that the condition f ∈ Lp(T
d), p =

2, does not guarantee convergence of {Gm(f, T )} in the Lp-norm. The
main goal of this section is to complement the survey of Temlyakov (2003a)
by recent results in the following setting: find an additional (to f ∈ Lp)
condition on f to guarantee that ‖f − Gm(f, T )‖p → 0 as m → ∞. In
Konyagin and Temlyakov (2003b) we proved the following theorem.

Theorem 1.7.1. Let f ∈ Lp(T
d), 2 < p ≤ ∞, and let q > p′ := p/(p− 1).

Assume that f satisfies the condition
∑

|k|>n

|f̂(k)|q = o(nd(1−q/p′))

where |k| := max1≤j≤d |kj |. Then we have

lim
m→∞

‖f − Gt
m(f, T d)‖p = 0.

It was proved in Konyagin and Temlyakov (2003b) that Theorem 1.7.1
is sharp.

Proposition 1.7.2. For each 2 < p ≤ ∞ there exists f ∈ Lp(T
d) such that

|f̂(k)| = O(|k|−d(1−1/p)),

and the sequence {Gm(f)} diverges in Lp.

Let us make some comments. For a given set Λ denote

EΛ(f)p := inf
ck,k∈Λ

∥

∥

∥

∥

f −
∑

k∈Λ

cke
i(k,x)

∥

∥

∥

∥

p

, SΛ(f) :=
∑

k∈Λ

f̂(k)ei(k,x).

Define a special domain

Q(n) := {k : |k| ≤ n1/d}.
Remark 1.7.3. Theorem 1.7.1 implies that if f ∈ Lp, 2 < p ≤ ∞, and

EQ(n)(f)2 = o(n1/p−1/2),

then Gt
m(f) → f in Lp.

Remark 1.7.4. The proof of Proposition 1.7.2 (see Konyagin and Tem-
lyakov (2003b)) implies that there is an f ∈ Lp(T

d) such that

EQ(n)(f)∞ = O(n1/p−1/2)

and {Gm(f)} diverges in Lp, 2 < p ≤ ∞.
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We note that Remark 1.7.3 can also be obtained from some general in-
equalities for ‖f − Gt

m(f)‖p. As in the above general definition of best
m-term approximation, we define the best m-term approximation with re-
gard to T d:

σm(f)p := σm(f, T d)p := inf
kj∈Zd,cj

∥

∥

∥

∥

f −
m

∑

j=1

cje
i(kj ,x)

∥

∥

∥

∥

p

.

The following inequality was proved in Temlyakov (1998c) for t = 1 and in
Konyagin and Temlyakov (2003b) for general t.

Theorem 1.7.5. For each f ∈ Lp(T
d) and any 0 < t ≤ 1 we have

‖f − Gt
m(f)‖p ≤ (1 + (2 + 1/t)mh(p))σm(f)p, 1 ≤ p ≤ ∞, (1.7.2)

where h(p) := |1/2 − 1/p|.

It was proved in Temlyakov (1998c) that the inequality (1.7.2) is sharp:
there is a positive absolute constant C such that, for each m and 1 ≤ p ≤ ∞,
there exists a function f = 0 with the property

‖Gm(f)‖p ≥ Cmh(p)‖f‖p. (1.7.3)

The above inequality (1.7.3) shows that the trigonometric system is not a
quasi-greedy basis for Lp, p = 2. We formulate one more inequality from
Konyagin and Temlyakov (2003b).

Theorem 1.7.6. Let 2 ≤ p ≤ ∞. Then, for any f ∈ Lp(T
d) and any Q,

|Q| ≤ m, we have

‖f − Gt
m(f)‖p ≤ ‖f − SQ(f)‖p + (3 + 1/t)(2m)h(p)EQ(f)2.

We present some results from Konyagin and Temlyakov (2003b) that
are formulated in terms of the Fourier coefficients. For f ∈ L1(T

d) let

{f̂(k(l))}∞l=1 denote the decreasing rearrangement of {f̂(k)}k∈Zd , i.e.,

|f̂(k(1))| ≥ |f̂(k(2))| ≥ · · · .

Let an(f) := |f̂(k(n))|.

Theorem 1.7.7. Let 2 < p < ∞ and let a decreasing sequence {An}∞n=1

satisfy the condition

An = o(n1/p−1) as n → ∞.

Then, for any f ∈ Lp(T
d) with the property an(f) ≤ An, n = 1, 2, . . . , we

have

lim
m→∞

‖f − Gt
m(f)‖p = 0.
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We also proved in Konyagin and Temlyakov (2003b) that, for any decreas-
ing sequence {An} satisfying

lim sup
n→∞

Ann1−1/p > 0,

there exists a function f ∈ Lp such that an(f) ≤ An, n = 1, . . . , whose
sequence {Gm(f)} of greedy approximants is divergent in Lp.

In Konyagin and Temlyakov (2003b) we proved a necessary and sufficient
condition on the majorant {An} to guarantee, under the assumption that f
is a continuous function, the uniform convergence of greedy approximants
to a function f .

Theorem 1.7.8. Let a decreasing sequence {An}∞n=1 satisfy the condition
(A∞):

∑

M<n≤eM

An = o(1) as M → ∞.

Then, for any f ∈ C(T) with the property an(f) ≤ An, n = 1, 2, . . . , we
have

lim
m→∞

‖f − Gt
m(f, T )‖∞ = 0.

The condition (A∞) is very close to the convergence of the series
∑

n An;
if the condition (A∞) holds then we have

N
∑

n=1

An = o(log∗(N)), as N → ∞,

where a function log∗(u) is defined to be bounded for u ≤ 0 and to satisfy
log∗(u) = log∗(log u) + 1 for u > 0. The function log∗(u) grows more slowly
than any iterated logarithmic function.

The condition (A∞) in Theorem 1.7.8 is sharp.

Theorem 1.7.9. Assume that a decreasing sequence {An}∞n=1 does not
satisfy the condition (A∞). Then there exists a function f ∈ C(T) with the
property an(f) ≤ An, n = 1, 2, . . . , and such that we have

lim sup
m→∞

‖f − Gm(f, T )‖∞ > 0

for some realization Gm(f, T ).

In Konyagin and Temlyakov (2005) we concentrated on imposing ex-
tra conditions in the following form. We assume that for some sequence
{M(m)}, M(m) > m, we have

‖GM(m)(f) − Gm(f)‖p → 0 as m → ∞.

When p is an even number, or p = ∞, we found, in Konyagin and Temlyakov
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(2005), necessary and sufficient conditions on the growth of the sequence
{M(m)} to provide convergence ‖f −Gm(f)‖p → 0 as m → ∞. We proved
the following theorem in Konyagin and Temlyakov (2005).

Theorem 1.7.10. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume
that f ∈ Lp(T) and there exists a sequence of positive integers M(m) >
m1+δ such that

‖Gm(f) − GM(m)(f)‖p → 0 as m → ∞.

Then we have

‖Gm(f) − f‖p → 0 as m → ∞.

In Konyagin and Temlyakov (2005) we proved that the condition M(m) >
m1+δ cannot be replaced by the condition M(m) > m1+o(1).

Theorem 1.7.11. For any p ∈ (2,∞) there exists a function f ∈ Lp(T)
with an Lp(T)-divergent sequence {Gm(f)} of greedy approximations with
the following property. For any sequence {M(m)} such that m ≤ M(m) ≤
m1+o(1), we have

‖GM(m)(f) − Gm(f)‖p → 0, as m → ∞.

In Konyagin and Temlyakov (2005) we also considered the case p = ∞,
and proved necessary and sufficient conditions for convergence of greedy
approximations in the uniform norm. For a mapping α : W → W we let αk

denote its k-fold iteration: αk := α ◦ αk−1.

Theorem 1.7.12. Let α : N → N be strictly increasing. Then the follow-
ing conditions are equivalent.

(a) For some k ∈ N and for any sufficiently large m ∈ N, we have the
inequality αk(m) > em.

(b) If f ∈ C(T) and
∥

∥Gα(m)(f) − Gm(f)
∥

∥

∞
→ 0, as m → ∞,

then
∥

∥f − Gm(f)
∥

∥

∞
→ 0 as m → ∞.

In order to illustrate the techniques used in the proofs of the above results
we discuss some inequalities that were used in proving Theorems 1.7.10 and
1.7.12. The reader will also see from the further discussion a connection to
some deep results in harmonic analysis. The general style of these inequali-
ties is as follows. A function that has a sparse representation with regard to
the trigonometric system cannot be approximated in Lp by functions with
small Fourier coefficients. We begin our discussion with some concepts in-
troduced in Konyagin and Temlyakov (2005) that are useful in proving such
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inequalities. The following new characteristic of a Banach space Lp plays
an important role in such inequalities. We introduce some more notation.
Let Λ be a finite subset of Z

d. We let |Λ| denote its cardinality and let T (Λ)
be the span of {ei(k,x)}k∈Λ. Denote

Σm(T ) = ∪Λ:|Λ|≤mT (Λ).

For f ∈ Lp, F ∈ Lp′ , 1 ≤ p ≤ ∞, p′ = p/(p − 1), we write

〈F, f〉 :=

∫

Td

F f̄ dµ, dµ := (2π)−d dx.

Definition 1.7.13. Let Λ be a finite subset of Z
d and 1 ≤ p ≤ ∞. We

call a set Λ′ := Λ′(p, γ), γ ∈ (0, 1], a (p, γ)-dual to Λ if, for any f ∈ T (Λ),
there exists F ∈ T (Λ′) such that ‖F‖p′ = 1 and 〈F, f〉 ≥ γ‖f‖p.

Let D(Λ, p, γ) denote the set of all (p, γ)-dual sets Λ′. The following
function is important for us:

v(m, p, γ) := sup
Λ:|Λ|=m

inf
Λ′∈D(Λ,p,γ)

|Λ′|.

We note that in a particular case p = 2q, q ∈ N we have

v(m, p, 1) ≤ mp−1. (1.7.4)

This follows immediately from the form of the norming functional F for
f ∈ Lp:

F = f q−1(f̄)q‖f‖1−p
p . (1.7.5)

In Konyagin and Temlyakov (2005) we used the quantity v(m, p, γ) in greedy
approximation. We first prove a lemma.

Lemma 1.7.14. Let 2 ≤ p ≤ ∞. For any h ∈ Σm(T ) and any g ∈ Lp, we
have

‖h + g‖p ≥ γ‖h‖p − v(m, p, γ)1−1/p‖{ĝ(k)}‖ℓ∞ .

Proof. Let h ∈ T (Λ) with |Λ| = m and let Λ′ ∈ D(Λ, p, γ). Then, using
the Definition 1.7.13 we find F (h, γ) ∈ T (Λ′) such that

‖F (h, γ)‖p′ = 1 and 〈F (h, γ), h〉 ≥ γ‖h‖p.

We have

〈F (h, γ), h〉 = 〈F (h, γ), h + g〉 − 〈F (h, γ), g〉 ≤ ‖h + g‖p + |〈F (h, γ), g〉|.
Next,

|〈F (h, γ), g〉| ≤ ‖{F̂ (h, γ)(k)}‖ℓ1‖{ĝ(k)}‖ℓ∞ .

Using F (h, γ) ∈ T (Λ′) and the Hausdorff–Young theorem (Zygmund 1959,
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Chapter 12, Section 1.2), we obtain

‖{F̂ (h, γ)(k)}‖ℓ1 ≤ |Λ′|1−1/p‖{F̂ (h, γ)(k)}‖ℓp

≤ |Λ′|1−1/p‖F (h, γ)‖p′ = |Λ′|1−1/p.

We now combine the above inequalities and use the definition of v(m, p, γ).

Definition 1.7.15. Let X be a finite-dimensional subspace of Lp, 1 ≤ p ≤
∞. We call a subspace Y ⊂ Lp′ a (p, γ)-dual to X, γ ∈ (0, 1], if for any
f ∈ X there exists F ∈ Y such that ‖F‖p′ = 1 and 〈F, f〉 ≥ γ‖f‖p.

As above, let D(X, p, γ) denote the set of all (p, γ)-dual subspaces Y .
Consider the following function:

w(m, p, γ) := sup
X:dim X=m

inf
Y ∈D(X,p,γ)

dimY.

We begin our discussion with a particular case: p = 2q, q ∈ N. Let X be
given and let e1, . . . , em form a basis of X. Using the Hölder inequality for
n functions f1, . . . , fn ∈ Ln, we have

∫

|f1 · · · fn|dµ ≤ ‖f1‖n · · · ‖fn‖n.

Setting fi = |ej |p′ , n = p − 1, we deduce that any function of the form

m
∏

i=1

|ei|ki , ki ∈ N,
m

∑

i=1

ki = p − 1,

belongs to Lp′ . It now follows from (1.7.5) that

w(m, p, 1) ≤ mp−1, p = 2q, q ∈ N. (1.7.6)

There is a general theory of the uniform approximation property (UAP)
which provides some estimates for w(m, p, γ) and v(m, p, γ). We give some
definitions from this theory. For a given subspace X of Lp, dimX = m,
and a constant K > 1, let kp(X, K) be the smallest k such that there is an
operator IX : Lp → Lp, with IX(f) = f for f ∈ X, ‖IX‖Lp→Lp ≤ K, and
rank IX ≤ k. Define

kp(m, K) := sup
X:dim X=m

kp(X, K),

and let us discuss how kp(m, K) can be used in estimating w(m, p, γ). Con-
sider the dual operator I∗X to IX . Then ‖I∗X‖Lp′→Lp′

≤ K and rank I∗X ≤
kp(m, K). Let f ∈ X, dim X = m, and let Ff be the norming functional
for f . Define

F := I∗X(Ff )/‖I∗X(Ff )‖p′ .
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Then, for any f ∈ X,

〈f, I∗X(Ff )〉 = 〈IX(f), Ff 〉 = 〈f, Ff 〉 = ‖f‖p

and

‖I∗X(Ff )‖p′ ≤ K

imply

〈f, F 〉 ≥ K−1‖f‖p.

Therefore

w(m, p, K−1) ≤ kp(m, K). (1.7.7)

We note that the behaviour of functions w(m, p, γ) and kp(m, K) may be
very different. Bourgain (1992) proved that, for any p ∈ (1,∞), p = 2, the
function kp(m, K) grows faster than any polynomial in m. The estimate
(1.7.6) shows that, in the particular case p = 2q, q ∈ N, the growth of
w(m, p, γ) is at most polynomial. This means that we cannot expect to
obtain accurate estimates for w(m, p, K−1) using inequality (1.7.7). We
give one more application of the UAP in the style of Lemma 1.7.14.

Lemma 1.7.16. Let 2 ≤ p ≤ ∞. For any h ∈ Σm(T ) and any g ∈ Lp we
have

‖h + g‖p ≥ K−1‖h‖p − kp(m, K)1/2‖g‖2, (1.7.8)

‖h + g‖p ≥ K−2‖h‖p − kp(m, K)‖{ĝ(k)}‖ℓ∞ . (1.7.9)

Proof. Let h ∈ T (Λ), |Λ| = m. Take X = T (Λ) and consider the operator
IX provided by the UAP. Let ψ1, . . . , ψM form an orthonormal basis for the
range Y of the operator IX . Then M ≤ kp(m, K). Let

IX(ei(k,x)) =

M
∑

j=1

ck
j ψj .

Then the property ‖IX‖Lp→Lp ≤ K implies

( M
∑

j=1

|ck
j |2

)1/2

= ‖IX(ei(k,x))‖2 ≤ ‖IX(ei(k,x))‖p ≤ K.

Consider along with the operator IX , the new operator,

A := (2π)−d

∫

Td

TtIXT−t dt,

where Tt is the shift operator: Tt(f) = f(· + t). Then

A(ei(k,x)) =
M
∑

j=1

ck
j (2π)−d

∫

Td

e−i(k,t)ψj(x + t) dt =

( M
∑

j=1

ck
j ψ̂j(k)

)

ei(k,x).
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Let

λk :=

M
∑

j=1

ck
j ψ̂j(k).

We have

∑

k

|λk|2 ≤
∑

k

( M
∑

j=1

|ck
j |2

)( M
∑

j=1

|ψ̂(k)|2
)

≤ K2M.

Also, λk = 1 for k ∈ Λ. For the operator A we have

‖A‖Lp→Lp ≤ K and ‖A‖L2→L∞
≤ KM1/2.

Therefore

‖A(h + g)‖p ≤ K‖h + g‖p

and

‖A(h + g)‖p ≥ ‖h‖p − KM1/2‖g‖2.

This proves the first inequality.
Consider the operator B := A2. Then

B(h) = h, h ∈ T (Λ), ‖B‖Lp→Lp ≤ K2,

and

‖B(f)‖∞ ≤ K2M‖{f̂(k)}‖ℓ∞ .

Now, on the one hand

‖B(h + g)‖p ≤ K2‖h + g‖p,

and on the other hand

‖B(h + g)‖p = ‖h + B(g)‖p ≥ ‖h‖p − K2M‖{ĝ(k)}‖ℓ∞ .

This proves inequality (1.7.9).

Theorem 1.7.17. For any h ∈ Σm(T ) and any g ∈ L∞ we have

‖h + g‖∞ ≥ K−1‖h‖∞ − eC(K)m/2‖g‖2,

‖h + g‖∞ ≥ K−2‖h‖∞ − eC(K)m‖{ĝ(k)}‖ℓ∞ .

Proof. This theorem is a direct corollary of Lemma 1.7.16 and the known
estimate

k∞(m, K) ≤ eC(K)m

(see Figiel, Johnson and Schechtman (1988)).

As we have already mentioned, kp(m, K) increases faster than any poly-
nomial. In Konyagin and Temlyakov (2005) we improved inequality (1.7.8)
by using other arguments.
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Lemma 1.7.18. Let 2 ≤ p ≤ ∞. For any h ∈ Σm(T ) and any g ∈ Lp, we
have

‖h + g‖p
p ≥ 2−p−1‖h‖p

p − 2mp/2‖h‖p−2
p ‖g‖2

2. (1.7.10)

We mention two inequalities from Konyagin and Temlyakov (2003b) in
the style of the inequalities in Lemmas 1.7.14–1.7.18.

Lemma 1.7.19. Let 2 ≤ p < ∞ and h ∈ Lp, ‖h‖p = 0. Then, for any
g ∈ Lp we have

‖h‖p ≤ ‖h + g‖p + (‖h‖2p−2/‖h‖p)
p−1‖g‖2.

Lemma 1.7.20. Let h ∈ Σm(T ), ‖h‖∞ = 1. Then, for any function g
such that ‖g‖2 ≤ 1

4(4πm)−m/2, we have

‖h + g‖∞ ≥ 1/4.

We proceed to estimate v(m, p, γ) and w(m, p, γ) for p ∈ [2,∞). In the
special case of even p, we have by (1.7.4) and (1.7.6) that

v(m, p, 1) ≤ mp−1, w(m, p, 1) ≤ mp−1.

The following bound was proved in Konyagin and Temlyakov (2005).

Lemma 1.7.21. Let 2 ≤ p < ∞, and let α := p/2 − [p/2]. Then we have

v(m, p, γ) ≤ mc(α,γ)m1/2+p−1.

1.8. Greedy-type bases; direct and inverse theorems

Theorem 1.3.1 points out the importance of bases Lp-equivalent to the Haar
basis. We will now discuss necessary and sufficient conditions for f to
have a prescribed decay of {σm(f, Ψ)} under the assumption that Ψ is Lp-
equivalent to the Haar basis H, 1 < p < ∞. We will express these conditions
in terms of coefficients {cn(f)} of the expansion

f =
∞

∑

n=1

cn(f)ψn.

The direct theorems of approximation theory provide bounds of approxi-
mation error (in our case σm(f, Ψ)) in terms of smoothness properties of a
function f . These theorems are also known under the name of Jackson-type
inequalities. The inverse theorems of approximation theory (also known as
Bernstein-type inequalities) provide some smoothness properties of a func-
tion f from the sequence of approximation errors (in our case {σm(f, Ψ)}).
It is well understood in approximation theory (see Petrushev (1988), De-
Vore and Lorenz (1993) and DeVore (1998)) how the Jackson-type and
Bernstein-type inequalities can be used in order to characterize the corre-
sponding approximation spaces. In the case of our interest, when we study
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best m-term approximation with regard to bases that are Lp-equivalent to
the Haar basis, the theory of Jackson and Bernstein inequalities has been
developed in Cohen et al. (2000). It was used in Cohen et al. (2000) for
a description of approximation spaces defined in terms of {σm(f, Ψ)}. We
want to point out that in the special case of bases that are Lp-equivalent
to the Haar basis (and also for some more general bases) there exists a
simple direct way to describe the approximation spaces defined in terms of
{σm(f, Ψ)} (Temlyakov 1998b, Kamont and Temlyakov 2004, Kerkyachar-
ian and Picard 2004). We present results from Temlyakov (1998b) here. The
following lemma from Temlyakov (1998a) (see Lemmas 3.1 and 3.2) plays
the key role in this consideration.

Lemma 1.8.1. Let a basis Ψ be Lp-equivalent to Hp, 1 < p < ∞. Then,
for any finite Λ and a ≤ |cn| ≤ b, n ∈ Λ, we have

C1(p, Ψ)a(|Λ|)1/p ≤
∥

∥

∥

∥

∑

n∈Λ

cnψn

∥

∥

∥

∥

p

≤ C2(p, Ψ)b(|Λ|)1/p. (1.8.1)

We note that the results that follow use only the assumption that Ψ is a
greedy basis satisfying (1.8.1). We formulate a general statement and then
consider several important particular examples of the rate of decrease of
{σm(f, Ψ)p}. We begin by introducing some notation. For a sequence E =
{ǫk}∞k=0 of positive numbers monotonically decreasing to zero (we write E ∈
MDP), we define inductively a sequence {Ns}∞s=0 of non-negative integers:

N0 = 0, and Ns is the smallest integer satisfying (1.8.2)

ǫNs < 2−s, ds := max(Ns+1 − Ns, 1).

We are going to consider the following examples of sequences.

Example 1.8.1. Take ǫ0 = 1 and ǫk = k−r, r > 0, k = 1, 2, . . . . Then

Ns ≍ 2s/r and ds ≍ 2s/r.

Example 1.8.2. Fix 0 < b < 1 and take ǫk = 2−kb
, k = 0, 1, 2, . . . . Then

Ns = s1/b + O(1) and ds ≍ s1/b−1.

Let f ∈ Lp. Rearrange the sequence ‖cn(f)ψn‖p in decreasing order,

‖cn1(f)ψn1‖p ≥ ‖cn2(f)ψn2‖p ≥ · · · ,

and define

ak(f, p) := ‖cnk
(f)ψnk

‖p.

We now give some inequalities for ak(f, p) and σm(f, Ψ)p. We will use the
abbreviations σm(f)p := σm(f, Ψ)p and σ0(f)p := ‖f‖p.
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Lemma 1.8.2. For any two positive integers N < M we have

aM (f, p) ≤ C(p, Ψ)σN (f)p(M − N)−1/p.

Proof. By Theorem 1.3.1 we have, for all m,

‖f − Gp
m(f, Ψ)‖p ≤ C(p, Ψ)σm(f)p.

Hence, and by definition of Gp
m, we get

J :=

∥

∥

∥

∥

M
∑

k=N+1

cnk
(f)ψnk

∥

∥

∥

∥

p

≤ C(p, Ψ)(σN (f)p + σM (f)p). (1.8.3)

Next, we have for k ∈ (N, M ],

‖cnk
(f)ψnk

‖p ≥ ‖cnM (f)ψnM ‖p = aM (f, p),

and by Lemma 1.8.1 we obtain

aM (f, p)(M − N)1/p ≤ C(p, Ψ)J. (1.8.4)

Relations (1.8.3) and (1.8.4) imply the conclusion of Lemma 1.8.2.

Lemma 1.8.3. For any sequence m0 < m1 < m2 < · · · of non-negative
integers we have

σms(f)p ≤ C(p, Ψ)
∞

∑

l=s

aml
(f, p)(ml+1 − ml)

1/p.

Proof. We have

σms(f)p ≤
∥

∥

∥

∥

∑

k>ms

cnk
(f)ψnk

∥

∥

∥

∥

p

≤
∞

∑

l=s

∥

∥

∥

∥

∑

k∈(ml,ml+1]

cnk
(f)ψnk

∥

∥

∥

∥

p

.

Hence, using Lemma 1.8.1,

σms(f)p ≤ C(p, Ψ)
∞

∑

l=s

aml
(f, p)(ml+1 − ml)

1/p,

as required.

Theorem 1.8.4. Assume a given sequence E ∈ MDP satisfies the condi-
tions

ǫNs ≥ C12
−s, ds+1 ≤ C2ds, s = 0, 1, 2, . . . .

Then we have the equivalence

σn(f)p ≪ ǫn ⇐⇒ aNs(f, p) ≪ 2−sd−1/p
s .

Proof. We first prove ⇒. If Ns+1 > Ns, then we use Lemma 1.8.2 with
M = Ns+1 and N = Ns,

aNs+1(f, p) ≤ C(p, Ψ)σNs(f)pd
−1/p
s ≤ C(p, Ψ)2−s−1(ds+1/C2)

−1/p,
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which implies the statement of Theorem 1.8.4 in this case. Let Ns+1 =
Ns = · · · = Ns−j > Ns−j−1. The assumption ǫNs ≥ C12

−s combined with
the definition of Ns: ǫNs < 2−s imply that j ≤ C3. Then, from the above
case we get

aNs−j (f, p) ≪ 2−s+j(ds−j)
−1/p,

and therefore

aNs+1(f, p) ≪ 2−s−1(ds+1)
−1/p.

The implication ⇒ has been proved.
We now prove the inverse statement ⇐. Using Lemma 1.8.3, we get

σNs(f)p ≪
∞

∑

l=s

aNl
(f, p)(Nl+1 − Nl)

1/p ≪
∞

∑

l=s

2−l ≪ 2−s ≪ ǫNs ,

and for n ∈ [Ns, Ns+1)

σn(f)p ≤ σNs(f)p ≪ ǫNs(f)p ≪ 2−s ≪ ǫNs+1(f)p ≤ ǫn(f)p.

Corollary 1.8.5. Theorem 1.8.4 applied to Examples 1.8.1 and 1.8.2 gives
the following relations:

σm(f)p ≪ (m + 1)−r ⇐⇒ an(f, p) ≪ n−r−1/p, (1.8.5)

σm(f)p ≪ 2−mb ⇐⇒ an(f, p) ≪ 2−nb
n(1−1/b)/p. (1.8.6)

Remark 1.8.6. Making use of Lemmas 1.8.2 and 1.8.3 we can prove a
version of Corollary 1.8.5 with the sign ≪ replaced by ≍.

Theorem 1.8.4 and Corollary 1.8.5 are in the spirit of the classical Jackson–
Bernstein direct and inverse theorems in linear approximation theory, where
conditions of the form

En(f)p ≪ ǫn, or ‖En(f)p/ǫn‖l∞ < ∞ (1.8.7)

are imposed on the corresponding sequences of approximating characteris-
tics. It is well known (see DeVore (1998)) that, in studying many questions
of approximation theory, it is convenient to consider, along with the restric-
tion (1.8.7), its following generalization:

‖En(f)p/ǫn‖lq < ∞. (1.8.8)

Lemmas 1.8.2 and 1.8.3 are also useful in handling this more general case.
For instance, in the particular case of Example 1.8.1 we get the following
statement.

Theorem 1.8.7. Let 1 < p < ∞ and 0 < q < ∞. Then, for any positive
r we have the equivalence relation

∑

m

σm(f)q
pm

rq−1 < ∞ ⇐⇒
∑

n

an(f, p)qnrq−1+q/p < ∞.
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Remark 1.8.8. The condition
∑

n

an(f, p)qnrq−1+q/p < ∞

with q = β := (r + 1/p)−1 takes a very simple form:
∑

n

an(f, p)β =
∑

n

‖cn(f)ψn‖β
p < ∞. (1.8.9)

In the case Ψ = Hp, condition (1.8.9) is equivalent to f being in Besov space
Br

β(Lβ).

Corollary 1.8.9. Theorem 1.8.7 implies the following relation:
∑

m

σm(f,H)β
pmrβ−1 < ∞ ⇐⇒ f ∈ Br

β(Lβ),

where β := (r + 1/p)−1.

The statement similar to Corollary 1.8.9 for free-knot spline approxima-
tion was proved in Petrushev (1988). Corollary 1.8.9 and further results in
this direction can be found in DeVore and Popov (1988) and DeVore, Jaw-
erth and Popov (1992). We want to remark here that conditions in terms
of an(f, p) are convenient in applications. For instance, relation (1.8.5) can
be rewritten using the idea of thresholding. For a given f ∈ Lp denote

T (ǫ) := #{ak(f, p) : ak(f, p) ≥ ǫ}.
Then (1.8.5) is equivalent to

σm(f)p ≪ (m + 1)−r ⇐⇒ T (ǫ) ≪ ǫ−(r+1/p)−1
.

For further results in this direction see DeVore (1998), Cohen et al. (2000)
and Oswald (2001).

The above direct and inverse Theorem 1.8.7 that holds for greedy bases
satisfying (1.8.1) was extended in Kerkyacharian and Picard (2004) to the
case of quasi-greedy bases satisfying (1.8.1). Kerkyacharian and Picard
(2004) say that a basis Ψ of a Banach space X has the p-Temlyakov property
if there exists 0 < C < ∞ such that, for any finite set of indices Λ, we have

C−1
(

min
n∈Λ

|cn|
)

|Λ|1/p ≤
∥

∥

∥

∥

∑

n∈Λ

cnψn

∥

∥

∥

∥

X

≤ C
(

max
n∈Λ

|cn|
)

|Λ|1/p. (1.8.10)

Now let

f =
∞

∑

k=1

ck(f)ψk

and
|ck1 | ≥ |ck2 | ≥ · · ·
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be a decreasing reordering of the coefficients. The following result is from
Kerkyacharian and Picard (2004).

Theorem 1.8.10. Let Ψ be a quasi-greedy basis.

(1) If Ψ has the p-Temlyakov property (1.8.10), then for any 0 < r < ∞,
0 < q < ∞ we have

∑

m

σm(f, Ψ)q
Xmrq−1 < ∞ ⇐⇒

∑

n

|ckn(f)|qnrq−1+q/p < ∞.

(1.8.11)

(2) If (1.8.11) holds with some r > 0, then Ψ has the p-Temlyakov property
(1.8.10).

We note that property (1.8.10) implies that Ψ is democratic. There-
fore, by Theorem 1.4.10 a quasi-greedy basis satisfying (1.8.10) is an almost
greedy basis. The basis Hd

p is not a democratic basis for Lp, p = 2, d > 1.
So, we cannot apply the above results in this case. Some direct and inverse
theorems for Hd

p are obtained in Kamont and Temlyakov (2004).

1.9. Some further results

We begin our discussion with the case of X = Lp, p = 1 or p = ∞ and Ψ =
Hd

p. It turns out that efficiency of greedy algorithms Gm(·,Hd
p), p = 1,∞,

drops down dramatically compared with the case 1 < p < ∞. We formulate
a result from Temlyakov (1998b).

Theorem 1.9.1. Let p = 1 or p = ∞. Then we have for each f ∈ Lp

‖f − Gm(f,Hd
p)‖p ≤ (3m + 1)σm(f,Hd)p.

The extra factor (3m + 1) cannot be replaced by a factor c(m) such that
c(m)/m → 0 as m → ∞.

This particular result indicates that there are problems with greedy ap-
proximation in L1 and in C with regard to the Haar basis. We note that, as
is proved in Oswald (2001), the extra factor 3m+1 is the best-possible extra
factor in Theorem 1.9.1. The greedy-type bases have nice properties and
they are important in nonlinear m-term approximation. Therefore, one of
the new directions of research in functional analysis and in approximation
theory is to understand which Banach spaces may have such bases. Another
direction is to understand in which Banach spaces some classical bases are of
greedy type. Some results in this direction can be derived immediately from
known results on Banach spaces that have unconditional bases, and from
the characterization Theorem 1.3.5. For instance, it is well known that the
spaces L1 and C do not have unconditional bases. Therefore, Theorem 1.3.5
implies that there is no greedy basis in L1 and in C.
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It was proved in Dilworth, Kutzarova and Wojtaszczyk (2002) that the
Haar basis H1 is not a quasi-greedy basis for L1. We saw in Section 1.6
that the use of the Weak Greedy Algorithm has some advantages over the
Greedy Algorithm. Theorem 1.6.2 states that the convergence set WT{en}
of the WGA is linear for any t ∈ (0, 1), while the convergence set may not
be linear for the Greedy Algorithm. Recently, Gogyan (2006) proved that,
for any t ∈ (0, 1) and for any f ∈ L1(0, 1), there exists a realization of the
WGA with respect to the Haar basis that converges to f in L1.

It was proved in Dilworth et al. (2002) that there exists an increasing
sequence of integers {nj} such that the lacunary Haar system {H1

2nj+l ; l =

1, . . . , 2nj , j = 1, 2, . . .} is a quasi-greedy basis for its linear span in L1.
Gogyan (2005) proved that the above property holds if either {nj} is a
sequence of all even numbers or {nj} is a sequence of all odd numbers. We
also note that the space L1(0, 1) has a quasi-greedy basis (Dilworth, Kalton
and Kutzarova 2003). The reader can find further results on existence (and
non-existence) of quasi-greedy and almost greedy bases in Dilworth et al.

(2003). In particular, it is proved in Dilworth et al. (2003) that C[0, 1] does
not have quasi-greedy bases.

We pointed out in Section 1.7 that the trigonometric system is not a quasi-
greedy basis for Lp, p = 2. The question of when (and for which weights w)
the trigonometric system forms a quasi-greedy basis for a weighted space
Lp(w) was studied in Nielsen (2006). The author proved that this can
happen only for p = 2 and, whenever the system forms a quasi-greedy
basis, the basis must be a Riesz basis.

Theorem 1.3.1A shows that, in the case when a basis Ψ is Lp-equivalent
to the Haar basis Hp, 1 < p < ∞, the Greedy Algorithm Gm(f, Ψ) provides
near-best approximation for each individual function f ∈ Lp. For a function
class F ⊂ X, let

σm(F, Ψ)X := sup
f∈F

σm(F, Ψ)X ,

Gm(F, Ψ)X := sup
f∈F

‖f − Gm(f, Ψ)‖X .

Obviously, if Gm(·, Ψ) provides near-best approximation for each individual
function, then it provides near-best approximation for each function class F :

Gm(F, Ψ)X ≤ Cσm(F, Ψ)X .

In Section 1.7 we pointed out that the trigonometric system is not a
quasi-greedy basis for Lp, p = 2 (see (1.7.3)). Thus, the trigonomet-
ric system is not a greedy basis for Lp, p = 2, and for some functions
f ∈ Lp, p = 2, Gm(f, T ), does not provide near-best approximation. How-
ever, it was proved in Temlyakov (1998c) that in many cases the algorithm
Gm(·, T ) is optimal for a given class of functions. The reader can find further
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results on σm(F, T d)p and Gm(F, T d)p for different classes F in DeVore and
Temlyakov (1995) and Temlyakov (1998c, 2000a, 2002a).

Consideration of approximation in a function class leads to a concept of
the optimal (best) basis for a given class. The first results for best ba-
sis approximation were given by Kashin (1985), who showed that, for any
orthonormal basis Ψ and any 0 < α ≤ 1, we have

σm(Lipα, Ψ)L2 ≥ cm−α, (1.9.1)

where the constant c depends only on α. It follows from this that any of
the standard wavelet or Fourier bases are best for the Lipschitz classes,
when the approximation is carried out in L2 and the competition is held
over all orthonormal bases. The estimate (1.9.1) rests on some fundamental
estimates for the best basis approximation of finite-dimensional hypercubes
using orthonormal bases.

The problem of best basis selection was studied in Coifman and Wicker-
hauser (1992). Donoho (1993, 1997) also studied the problem of best bases
for a function class F . He calls a basis Ψ from a collection B best for F if

σm(F, Ψ)X = O(m−α), m → ∞,

and no other basis Ψ′ from B satisfies

σn(F, Ψ′)X = O(n−β), n → ∞,

for a value of β > α. Donoho has shown that in some cases it is possible
to determine a best basis (in the above sense) for the class F by intrinsic
properties of how the class gets represented with respect to the basis. In
Donoho’s analysis (as was the case for Kashin as well) the space X is L2 (or
equivalently any Hilbert space), and the competition for a best basis takes
place over all complete orthonormal systems (i.e., B consists of all complete
orthonormal bases for L2).

In DeVore, Petrova and Temlyakov (2003) we continued to study the
problem of optimal basis selection with regard to natural collections of bases.
We worked on the following problem in this direction. We say that a function
class F is aligned to the basis Ψ if, whenever f =

∑

akψk is in F , then
∑

a′kψk ∈ F for any |a′k| ≤ c|ak|, k = 1, 2, . . . ,

where c > 0 is a fixed constant. We pointed out in DeVore et al. (2003)
that the results from Kashin (1985) and Donoho (1993) imply the following
result.

Theorem 1.9.2. Let Φ be an orthonormal basis for a Hilbert space H
and let F be a function class aligned with Φ such that, for some α > 0,
β ∈ R, we have

lim sup
m→∞

mα(log m)βσm(F, Φ) > 0.
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Then, for any orthonormal basis B we have

lim sup
m→∞

mα(log m)βσm(F, B) > 0.

We have obtained in DeVore et al. (2003) a generalization of this impor-
tant result in the following direction. We replaced the Hilbert space with
the Banach space and also widened the search for optimal basis selection
from the collection of orthonormal bases to the collection of unconditional
bases. Here is the corresponding theorem from DeVore et al. (2003).

Theorem 1.9.3. Let Ψ be a normalized unconditional basis for X with
the property

∥

∥

∥

∥

∑

j∈A

ψj

∥

∥

∥

∥

X

≍ (#A)µ,

for some µ > 0. Assume that the function class F is aligned with Ψ, and
for some α > 0, β ∈ R we have

lim sup
m→∞

mα(log m)βσm(F, Ψ) > 0.

Then, for any unconditional basis B we have

lim sup
m→∞

mα(log m)α+βσm(F, B) > 0. (1.9.2)

Theorem 1.9.3 is weaker than Theorem 1.9.2 in the sense that we have
an extra factor (log m)α in (1.9.2). Recently, Bednorz (2006) proved Theo-
rem 1.9.3 with (1.9.2) replaced by (1.9.3):

lim sup
m→∞

mα(log m)βσm(F, B) > 0. (1.9.3)

The following nonlinear analogues of the Kolmogorov widths and the
ortho-widths (see, for instance, Temlyakov (1989a)) were considered in
Temlyakov (2000a, 2002a, 2003a). Let a function class F and a Banach
space X be given. Assume that, on the basis of some additional informa-
tion, we know that our basis for m-term approximation should satisfy some
structural properties, for instance, it has to be orthogonal. Let B be a
collection of bases satisfying a given property.

I Define an analogue of the Kolmogorov width

σm(F, B)X := inf
Ψ∈B

sup
f∈F

σm(f, Ψ)X .

II Define an analogue of the orthowidth

γm(F, B)X := inf
Ψ∈B

sup
f∈F

‖f − Gm(f, Ψ)‖X .
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In the papers cited above some results were obtained when B = O, the
set of orthonormal bases, and F is either a multivariate smoothness class of
an anisotropic Sobolev–Nikol’skii kind, or a class of functions with bounded
mixed derivatives.

We conclude this section with a very recent result from Wojtaszczyk
(2006). Theorem 1.3.1 says that the univariate Haar basis H is a greedy
basis for Lp := Lp([0, 1]), 1 < p < ∞. The spaces Lp are examples
of rearrangement-invariant spaces. Let us recall that a rearrangement-
invariant space of functions defined on [0, 1] is a Banach space X with norm
‖ · ‖ whose elements are measurable (in the sense of Lebesgue) functions
defined on [0, 1] satisfying the following conditions.

(1) If f ∈ X and g is a measurable function such that |g(x)| ≤ |f(x)|
almost everywhere, then g ∈ X and ‖g‖ ≤ ‖f‖.

(2) If f ∈ X and g has the same distribution as f , i.e., for all λ,

measure({x ∈ [0, 1] : f(x) ≤ λ}) = measure({x ∈ [0, 1] : g(x) ≤ λ}),
then g ∈ X and ‖g‖ = ‖f‖.

The following result was proved in Wojtaszczyk (2006).

Theorem 1.9.4. Let X be a rearrangement-invariant space on [0, 1]. If
the Haar system normalized in X is a greedy basis for X, then X = Lp([0, 1])
with some 1 < p < ∞.

It is a very interesting result that singles out the Lp-spaces with 1< p< ∞
from the collection of rearrangement-invariant spaces. Theorem 1.9.4 em-
phasizes the importance of the Lp-spaces in the theory of greedy approxi-
mation.

1.10. Systems Lp-equivalent to H

In the previous sections of this chapter we have presented elements of a
general theory of greedy-type bases. In this section we concentrate on con-
struction of greedy bases and related bases that are useful in approximation
of functions in the Lp-norm. Theorem 1.3.1 indicates importance of bases
that are Lp-equivalent to the Haar basis H. It says that such bases are
greedy bases for Lp, 1 < p < ∞. Theorem 1.3.1 addresses the case of
Lp([0, 1]). The same proof works for the Lp(R). In this section we will
give some sufficient conditions on a system of functions in order to be Lp-
equivalent to the Haar basis. It is more convenient to give these conditions
in the case of Lp(R). These results are a part of general Littlewood–Paley
theory. We begin in this section by introducing various forms of Littlewood–
Paley theory for systems of functions. From the univariate wavelet ψ,
we can construct efficient bases for L2(R) and other function spaces by
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dilation and shifts (see, for instance, DeVore (1998)). For example, the
functions

ψj,k := 2k/2ψ(2k · −j), j, k ∈ Z,

form a stable basis (orthogonal basis in the case of an orthogonal wavelet ψ)
for L2(R).

It is convenient to use a different indexing for the functions ψj,k. Let
D := D(R) denote the set of dyadic intervals. Each such interval I is of the
form I = [j2−k, (j + 1)2−k]. We define

ψI := ψj,k, I = [j2−k, (j + 1)2−k]. (1.10.1)

Thus the basis {ψj,k}j,k∈Z is the same as {ψI}I∈D(R).
We consider in this section systems of functions {η(I, ·)}I∈D defined on R.

If 1 < p < ∞, we say that a family of real-valued functions η(I, ·), I ∈ D,
satisfies the strong Littlewood–Paley property for p if, for any finite sequence
(cI) of real numbers, we have

∥

∥

∥

∥

∑

I∈D

cIη(I, ·)
∥

∥

∥

∥

p

≍
∥

∥

∥

∥

(

∑

I∈D

[cIη(I, ·)]2
)1/2∥

∥

∥

∥

p

(1.10.2)

with constants of equivalency depending at most on p. Here and later we
use the notation A ≍ B to mean that there are two constants C1, C2 > 0
such that

C1A ≤ B ≤ C2A.

We shall indicate what the constants depend on (in the case of (1.10.2) they
may depend on p).

Here is a useful remark concerning (1.10.2). From the validity of (1.10.2)
for finite sequences, we can deduce its validity for infinite sequences by a
limiting argument. For example, if (cI)I∈D is an infinite sequence for which
the sum on the left-hand side of (1.10.2) converges in Lp(R) with respect to
some ordering of the I ∈ D, then the right-hand side of (1.10.2) will converge
with respect to the same ordering and the right-hand side of (1.10.2) will
be less than a multiple of the left. Likewise, we can reverse the roles of the
left- and right-hand sides. Similar remarks hold for other statements such
as (1.10.2).

We use strong Littlewood–Paley inequality to differentiate (1.10.2) from
other possible forms of Littlewood–Paley inequalities. For example, the
Littlewood–Paley inequalities for the complex exponentials take a different
form (see Zygmund (1959, Chapter XV)). Another point of interest in our
considerations is the following:

∥

∥

∥

∥

∑

I∈D

cIη(I, ·)
∥

∥

∥

∥

p

≍
∥

∥

∥

∥

(

∑

I∈D

[cIχI ]
2

)1/2∥
∥

∥

∥

p

. (1.10.3)



Greedy approximation 299

We use the notation χ for the characteristic function of [0, 1] and χI for its
L2(R)-normalized, shifted dilates given by (1.10.1) (with ψ = χ).

The two forms (1.10.2) and (1.10.3) are equivalent under very mild condi-
tions on the functions η(I, ·). To see this, we shall use the Hardy–Littlewood
maximal operator, which is defined for a locally integrable function g on
R by

Mg(x) := sup
J∋x

1

|J |

∫

J
|g(y)|dy

with the supremum taken over all intervals J that contain x. It is well known
that M is a bounded operator on Lp(R) for all 1 < p ≤ ∞. The Fefferman–
Stein inequality (Fefferman and Stein 1972) bounds the mapping M on
sequences of functions. We shall only need the following special case of this
inequality, which says that for any functions η(I, ·) and constants cI , I ∈ D,
we have for 1 < p ≤ ∞,

∥

∥

∥

∥

(

∑

I∈D

(cIMη(I, ·))2
)1/2∥

∥

∥

∥

p

≤ A

∥

∥

∥

∥

(

∑

I∈D

(cIη(I, ·))2
)1/2∥

∥

∥

∥

p

, (1.10.4)

with an absolute constant A.
Consider now as an example the equivalence of (1.10.2). If the functions

η(I, ·), I ∈ D, satisfy

|η(I, x)| ≤ CMχI(x), χI(x) ≤ CMη(I, x), for almost all x ∈ R,
(1.10.5)

then, using (1.10.4), we see that (1.10.2) holds if and only if (1.10.3) holds.
The first inequality in (1.10.5) is a decay condition on η(I, ·). For example, if
η(I, ·) is given by the normalized, shifted dilates of the function ψ, η(I, ·) =
ψI , then the first inequality in (1.10.5) holds whenever

|ψ(x)| ≤ C[max(1, |x|)]−λ, for almost all x ∈ R,

with λ ≥ 1. The second condition in (1.10.5) is extremely mild. For exam-
ple, it is always satisfied when the family η(I, ·) is generated by the shifted
dilates of a non-zero function ψ.

Suppose that we have in hand two families η(I, ·), µ(I, ·), I ∈ D(R). We
shall use the notation {η(I, ·)}I∈D ≺ {µ(I, ·)}I∈D if there is a constant
C > 0 such that

∥

∥

∥

∥

∑

I∈D

cIη(I, ·)
∥

∥

∥

∥

p

≤ C

∥

∥

∥

∥

∑

I∈D

cIµ(I, ·)
∥

∥

∥

∥

p

(1.10.6)

holds for all finite sequences (cI)I∈D with C independent of the sequence. If
{η(I, ·)}I∈D ≺ {µ(I, ·)}I∈D and {µ(I, ·)}I∈D ≺ {η(I, ·)}I∈D, then we write
{η(I, ·)}I∈D ≈ {µ(I, ·)}I∈D and say that these systems are Lp-equivalent.
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Given two families η(I, ·), µ(I, ·), I ∈ D(R), we define the operator T
which maps µ(I, ·) into η(I, ·) for all I ∈ D, and we extend T to finite linear
combinations of the µ(I, ·) by linearity. Then (1.10.6) holds if and only if
T is a bounded operator with respect to the Lp-norm, and {µ(I, ·)}I∈D ≺
{η(I, ·)}I∈D holds if and only if T has a bounded inverse with respect to
the Lp-norm.

The strong Littlewood–Paley inequalities (1.10.3) are the same as the Lp-
equivalence {η(I, ·)} ≈ {HI}. We begin with a presentation of sufficient
conditions in order that {η(I, ·)} ≺ {HI}. Let ξI , I ∈ D, denote the centre
of the dyadic interval I. We shall assume in this section that η(I, ·), I ∈ D,
is a family of univariate functions that satisfy the following assumptions.

A1 There is an ǫ > 0, and a constant C1 such that, for all t ∈ R and all
J ∈ D, we have

|η(J, ξJ + t|J |)| ≤ C1|J |−1/2(1 + |t|)−1−ǫ.

A2 There is an ǫ > 0 and a constant C2 and a partition of [−1/2, 1/2] into
intervals J1, . . . , Jm that are dyadic with respect to [−1/2, 1/2], such
that, for any J ∈ D, any j ∈ Z, and any t1, t2 in the interior of the
same interval Jk, k = 1, . . . , m, we have

|η(J, ξJ + j|J | + t1|J |) − η(J, ξJ + j|J | + t2|J |)|
≤ C2|J |−1/2(1 + |j|)−1−ǫ|t2 − t1|ǫ,

A3 For any J ∈ D, we have
∫

R

η(J, x) dx = 0.

When η(J, ·) = ψJ for a function ψ, it is enough to check these assump-
tions for J = [0, 1], i.e., for the function ψ alone. They follow for all other
dyadic intervals J by dilation and translation.

Condition A1 is a standard decay assumption and A3 is the zero moment
condition. Condition A2 requires that the functions η(I, ·) be piecewise
in Lip ǫ.

Let T be the linear operator which satisfies

T

(

∑

I∈D

cIHI

)

=
∑

I∈D

cIη(I, ·) (1.10.7)

for each finite linear combination
∑

I∈D cIHI of the HI . We wish to show
that

∥

∥

∥

∥

T

(

∑

I∈D

cIHI

)
∥

∥

∥

∥

p

≤ C

∥

∥

∥

∥

∑

I∈D

cIHI

∥

∥

∥

∥

p

for each such sum. From this it would follow that T extends (by continuity)
to a bounded operator on all of Lp(R) and therefore {η(I, ·)} ≺ {HI}.
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We can expand η(J, ·) into its Haar decomposition. Let

λ(I, J) :=

∫

R

η(J, x)HI(x) dx, (1.10.8)

so that

η(J, ·) =
∑

I∈D

λ(I, J)HI .

It follows that

T

(

∑

J∈D

cJHJ

)

=
∑

I∈D

∑

J∈D

λ(I, J)cJHI . (1.10.9)

Thus the mapping T is tied to the bi-infinite matrix Λ := (λ(I, J))I,J∈D,
which maps the sequence c := (cJ) to the sequence

(c′I) := Λc.

One approach to proving Littlewood–Paley inequalities is to show that
the matrix Λ decays sufficiently fast away from the diagonal (see Frazier
and Jawerth (1990, Section 3)). Following Frazier and Jawerth (1990), we
say that a matrix A = (a(I, J))I,J∈D is almost diagonal if, for some ǫ > 0,
we have

|a(I, J)| ≤ Cω(I, J), (1.10.10)

with

ω(I, J) :=

(

1 +
|ξI − ξJ |

max(|I|, |J |)

)−1−ǫ(

min

( |I|
|J | ,

|J |
|I|

))(1+ǫ)/2

. (1.10.11)

In DeVore et al. (1998) we used the following special case of a theorem
of Frazier and Jawerth (1990, Theorem 3.3), concerning almost diagonal
operators.

Theorem 1.10.1. If (a(I, J))I,J∈D is an almost diagonal matrix, then the
operator A defined by

A

(

∑

J∈D

cJHJ

)

:=
∑

I∈D

∑

J∈D

a(I, J)cJHI (1.10.12)

is bounded on Lp(R) for each 1 < p < ∞.

In DeVore et al. (1998) we proved the following theorems.

Theorem 1.10.2. If η(I, ·), I ∈ D, satisfy assumptions A1–A3, then the
operator T defined by (1.10.7) is bounded from Lp(R) into itself for each
1 < p < ∞.

Corollary 1.10.3. If η(I, ·), I ∈ D, satisfy assumptions A1–A3, then
{η(I, ·}I∈D ≺ {HI}I∈D.
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We can use a duality argument to give sufficient conditions that the oper-
ator T of (1.10.7) is boundedly invertible. For this, we assume that η(I, ·),
I ∈ D, is a family of functions for which there is a dual family η∗(I, ·),
I ∈ D, that satisfies

〈η(I, ·), η∗(J, ·)〉 = δ(I, J), I, J ∈ D.

Theorem 1.10.4. If the functions η∗(I, ·), I ∈ D, satisfy assumptions
A1–A3, then {HI}I∈D ≺ {η(I, ·}I∈D.

Theorem 1.10.5. If the systems of functions {η(I, ·)}I∈D, {η∗(I, ·)}I∈D,
satisfy assumptions A1–A3, then the system {η(I, ·)}I∈D is Lp-equivalent
to the Haar system {HI}I∈D for 1 < p < ∞.

It is known from different results (see DeVore et al. (1992), DeVore (1998),
Temlyakov (2003a)) that wavelets are well designed for nonlinear approx-
imation. We present here one general result in this direction. We fix
p ∈ (1,∞) and consider in Lp([0, 1]d) a basis Ψ := {ψI}I∈D indexed by
dyadic intervals I of [0, 1]d, I = I1 × · · · × Id, Ij is a dyadic interval of [0, 1],
j = 1, . . . , d, which satisfies certain properties. Set Lp := Lp(Ω) with a
normalized Lebesgue measure on Ω, |Ω| = 1. First of all we assume that,
for all 1 < q, p < ∞ and I ∈ D, where D := D([0, 1]d) is the set of all dyadic
intervals of [0, 1]d, we have

‖ψI‖p ≍ ‖ψI‖q|I|1/p−1/q, (1.10.13)

with constants independent of I. This property can be easily checked for a
given basis.

Next, assume that for any s = (s1, . . . , sd) ∈ Z
d, sj ≥ 0, j = 1, . . . , d, and

any {cI}, we have for 1 < p < ∞
∥

∥

∥

∥

∑

I∈Ds

cIψI

∥

∥

∥

∥

p

p

≍
∑

I∈Ds

‖cIψI‖p
p, (1.10.14)

where

Ds := {I = I1 × · · · × Id ∈ D : |Ij | = 2−sj , j = 1, . . . , d}.

This assumption allows us to estimate the Lp-norm of a dyadic block in
terms of Fourier coefficients.

The third assumption is that Ψ is a basis satisfying the following version
(weak form) of the Littlewood–Paley inequality, as follows. Let 1 < p < ∞
and let f ∈ Lp have the expansion

f =
∑

I

fIψI .
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We assume that

lim
minj µj→∞

∥

∥

∥

∥

f −
∑

sj≤µj ,j=1,...,d

∑

I∈Ds

fIψI

∥

∥

∥

∥

p

= 0, (1.10.15)

and

‖f‖p ≍
∥

∥

∥

∥

(

∑

s

∣

∣

∣

∣

∑

I∈Ds

fIψI

∣

∣

∣

∣

2)1/2∥
∥

∥

∥

p

. (1.10.16)

Let µ ∈ Z
d, µj ≥ 0, j = 1, . . . , d. Denote by Ψ(µ) the subspace of polyno-

mials of the form

ψ =
∑

sj≤µj ,j=1,...,d

∑

I∈Ds

cIψI .

We now define a function class. Let R = (R1, . . . , Rd), Rj > 0, j = 1, . . . , d,
and

g(R) :=

( d
∑

j=1

R−1
j

)−1

.

For any natural number l, define

Ψ(R, l) := Ψ(µ), µj = [g(R)l/Rj ], j = 1, . . . , d.

We define the class HR
q (Ψ) as the set of functions f ∈ Lq representable in

the form

f =
∞

∑

l=1

tl, tl ∈ Ψ(R, l), ‖tl‖q ≤ 2−g(R)l.

We proved in Temlyakov (2002a) the following theorem.

Theorem 1.10.6. Let 1 < q, p < ∞ and g(R) > (1/q − 1/p)+. Then, for
Ψ satisfying (1.10.13)–(1.10.16), we have

sup
f∈HR

q (Ψ)

‖f − G
Lp
m (f, Ψ)‖p ≪ m−g(R).

In the periodic case the basis Ud := U ×· · ·×U can be used in place of Ψ
in Theorem 1.10.6. We define the system U := {UI} in the univariate case.
Denote

U+
n (x) :=

2n−1
∑

k=0

eikx =
ei2nx − 1

eix − 1
, n = 0, 1, 2, . . . ,

U+
n,k(x) := ei2nxU+

n (x − 2πk2−n), k = 0, 1, . . . , 2n − 1,

U−
n,k(x) := e−i2nxU+

n (−x + 2πk2−n), k = 0, 1, . . . , 2n − 1.
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We normalize the system of functions {U+
n,k, U

−
n,k} in L2 and enumerate it

by dyadic intervals. We write

UI(x) := 2−n/2U+
n,k(x) with I = [(k + 1/2)2−n, (k + 1)2−n),

UI(x) := 2−n/2U−
n,k(x) with I = [k2−n, (k + 1/2)2−n),

and

U[0,1)(x) := 1.

Wojtaszczyk (1997) proved that U is an unconditional basis of Lp, 1 <
p < ∞. It is well known that HR

q (Ud) is equivalent to the standard

anisotropic multivariate periodic Hölder–Nikol’skii classes NHR
p . We de-

fine these classes in the following way (see Nikol’skii (1975)). The class
NHR

p , R = (R1, . . . , Rd) and 1 ≤ p ≤ ∞, is the set of periodic functions

f ∈ Lp([0, 2π]d) such that, for each lj = [Rj ] + 1, j = 1, . . . , d, the following
relations hold:

‖f‖p ≤ 1, ‖∆lj ,j
t f‖p ≤ |t|Rj , j = 1, . . . , d, (1.10.17)

where ∆l,j
t is the lth difference with step t in the variable xj . For d = 1,

NHR
p coincides with the standard Hölder class HR

p . Theorem 1.10.6 gives
the following result.

Theorem 1.10.7. Let 1 < q, p < ∞; then for R such that g(R) > (1/q −
1/p)+, we have

sup
f∈NHR

q

‖f − G
Lp
m (f, Ud)‖p ≪ m−g(R).

We also proved in Temlyakov (2002a) that the basis Ud is an optimal
orthonormal basis for approximation of classes NHR

q in Lp:

σm(NHR
q , O)p ≍ σm(NHR

q , Ud)p ≍ m−g(R) (1.10.18)

for 1 < q < ∞, 2 ≤ p < ∞, g(R) > (1/q − 1/p)+. Here O is a collection of
orthonormal bases. It is important to note that Theorem 1.10.7 guarantees

that the estimate in (1.10.18) can be realized by greedy algorithm G
Lp
m (·, Ud)

with regard to Ud. Another important feature of (1.10.18) is that the basis
Ud is optimal (in the sense of order) for each class NHR

q independently
of R = (R1, . . . , Rd) and q. This property is known as universality for
a collection of classes (in the above case, the collection {NHR

q }). Further
discussion of this important issue can be found in Temlyakov (2002a, 2003a).
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CHAPTER TWO

Greedy approximation with respect to dictionaries:

Hilbert spaces

2.1. Introduction

We discuss greedy approximation with regard to redundant systems in this
chapter. Greedy approximation is a special form of nonlinear approxima-
tion. The basic idea behind nonlinear approximation is that the elements
used in the approximation do not come from a fixed linear space but are
allowed to depend on the function being approximated. The standard prob-
lem in this regard is the problem of m-term approximation, where one fixes a
basis and aims to approximate a target function f by a linear combination
of m terms of the basis. We discussed this problem in detail in Chap-
ter 1. When the basis is a wavelet basis or a basis of other waveforms, then
this type of approximation is the starting point for compression algorithms.
An important feature of approximation using a basis

Ψ := {ψk}∞k=1

of a Banach space X is that each function f ∈ X has a unique representation

f =
∞

∑

k=1

ck(f)ψk, (2.1.1)

and we can identify f with the set of its coefficients {ck(f)}∞k=1. The problem
of m-term approximation with regard to a basis has been studied thoroughly
and rather complete results have been established (see Chapter 1). In par-
ticular, it was established that the greedy-type algorithm which forms a sum
of m terms with the largest ‖ck(f)ψk‖X out of expansion (2.1.1) realizes in
many cases near-best m-term approximation for function classes (DeVore
et al. 1992) and even for individual functions (see Chapter 1).

Recently, there has emerged another more complicated form of nonlin-
ear approximation, which we call highly nonlinear approximation. It takes
many forms but has the basic ingredient that a basis is replaced by a larger
system of functions that is usually redundant. We call such systems dic-
tionaries. On the one hand, redundancy offers much promise for greater
efficiency in terms of the approximation rate, but on the other hand gives
rise to highly non-trivial theoretical and practical problems. The problem
of characterizing approximation rate for a given function or function class
is now much more substantial and results are quite fragmentary. However,
such results are very important for understanding what this new type of
approximation offers. Perhaps the first example of this type was considered
by Schmidt (1906), who studied the approximation of functions f(x, y) of
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two variables by bilinear forms,
m

∑

i=1

ui(x)vi(y),

in L2([0, 1]2). This problem is closely connected with properties of the
integral operator

Jf (g) :=

∫ 1

0
f(x, y)g(y) dy

with kernel f(x, y). Schmidt (1906) gave an expansion (known as the
Schmidt expansion)

f(x, y) =
∞

∑

j=1

sj(Jf )φj(x)ψj(y),

where {sj(Jf )} is a non-increasing sequence of singular numbers of Jf , i.e.,

sj(Jf ) := λj(J
∗
f Jf )1/2, where {λj(A)} is the sequence of eigenvalues of an

operator A, and J∗
f is the adjoint operator to Jf . The two sequences {φj(x)}

and {ψj(y)} form orthonormal sequences of eigenfunctions of the operators
JfJ∗

f and J∗
f Jf , respectively. He also proved that

∥

∥

∥

∥

f(x, y)−
m

∑

j=1

sj(Jf )φj(x)ψj(y)

∥

∥

∥

∥

L2

= inf
uj ,vj∈L2, j=1,...,m

∥

∥

∥

∥

f(x, y) −
m

∑

j=1

uj(x)vj(y)

∥

∥

∥

∥

L2

.

It was understood later that the above best bilinear approximation can
be realized by the following greedy algorithm. Assume cj , uj(x), vj(y),
‖uj‖L2 = ‖vj‖L2 = 1, j = 1, . . . , m − 1, have been constructed after m − 1
steps of the algorithm. At the mth step we choose cm, um(x), vm(y),
‖um‖L2 = ‖vm‖L2 = 1, to minimize

∥

∥

∥

∥

f(x, y) −
m

∑

j=1

cjuj(x)vj(y)

∥

∥

∥

∥

L2

.

We call this type of algorithm the Pure Greedy Algorithm (PGA) (see the
general definition below).

Another problem of this type which is well known in statistics is the pro-
jection pursuit regression problem, mentioned in the Preface. The problem
is to approximate in L2 a given function f ∈ L2 by a sum of ridge functions,
i.e., by

m
∑

j=1

rj(ωj · x), x, ωj ∈ R
d, j = 1, . . . , m,
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where rj , j = 1, . . . , m, are univariate functions. The following greedy-
type algorithm (projection pursuit) was proposed in Friedman and Stuetzle
(1981) to solve this problem. Assume functions r1, . . . , rm−1 and vectors
ω1, . . . , ωm−1 have been determined after m− 1 steps of algorithm. Choose
at the mth step a unit vector ωm and a function rm to minimize the error

∥

∥

∥

∥

f(x) −
m

∑

j=1

rj(ωj · x)

∥

∥

∥

∥

L2

.

This is one more example of a Pure Greedy Algorithm. The Pure Greedy
Algorithm and some other versions of greedy-type algorithms have recently
been intensively studied: see Barron (1993), Donahue, Gurvits, Darken and
Sontag (1997), Davis, Mallat and Avellaneda (1997), DeVore and Temlyakov
(1996, 1997), Dubinin (1997), Huber (1985), Jones (1987, 1992), Konya-
gin and Temlyakov (1999b), Livshitz (2006, 2007a, 2007b), Livshitz and
Temlyakov (2001, 2003) and Temlyakov (1999, 2000b, 2002b, 2003b). There
are several survey papers that discuss greedy approximation with regard
to redundant systems: see DeVore (1998) and Temlyakov (2003a, 2006a).
In this chapter we discuss along with the PGA some of its modifications
which are more suitable for implementation. This new type of greedy algo-
rithms will be termed Weak Greedy Algorithms.

In order to orient the reader we recall some notation and definitions from
the theory of greedy algorithms. Let H be a real Hilbert space with an inner
product 〈·, ·〉 and the norm ‖x‖ := 〈x, x〉1/2. We say a set D of functions
(elements) from H is a dictionary if each g ∈ D has norm one (‖g‖ = 1) and
the closure of spanD is equal to H. Sometimes it will be convenient for us
also to consider the symmetrized dictionary D± := {±g : g ∈ D}. In DeVore
and Temlyakov (1996) we studied the following two greedy algorithms. If
f ∈ H, we let g = g(f) ∈ D be the element from D which maximizes |〈f, g〉|
(we make an additional assumption that a maximizer exists) and define

G(f) := G(f,D) := 〈f, g〉g (2.1.2)

and

R(f) := R(f,D) := f − G(f).

Pure Greedy Algorithm (PGA). We define f0 := R0(f) := R0(f,D) :=
f and G0(f) := G0(f,D) := 0. Then, for each m ≥ 1, we inductively define

Gm(f) := Gm(f,D) := Gm−1(f) + G(Rm−1(f)),

fm := Rm(f) := Rm(f,D) := f − Gm(f) = R(Rm−1(f)).

We note that the Pure Greedy Algorithm is known under the name Match-
ing Pursuit in signal processing (see, for instance, Mallat and Zhang (1993)).
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If H0 is a finite-dimensional subspace of H, we let PH0 be the orthogonal
projector from H onto H0. That is, PH0(f) is the best approximation to f
from H0.

Orthogonal Greedy Algorithm (OGA). We define fo
0 := Ro

0(f) :=
Ro

0(f,D) := f and Go
0(f) := Go

0(f,D) := 0. Then, for each m ≥ 1, we
inductively define

Hm := Hm(f) := span{g(Ro
0(f)), . . . , g(Ro

m−1(f))},
Go

m(f) := Go
m(f,D) := PHm(f),

fo
m := Ro

m(f) := Ro
m(f,D) := f − Go

m(f).

We remark that for each f we have

‖fo
m‖ ≤ ‖fo

m−1 − G1(f
o
m−1,D)‖. (2.1.3)

In Section 1.5 we realized that the Weak Greedy Algorithms with regard
to bases work as well as the corresponding Greedy Algorithms. In this chap-
ter we study similar modifications of the Pure Greedy Algorithm (PGA) and
the Orthogonal Greedy Algorithm (OGA), which we call, respectively, the
Weak Greedy Algorithm (WGA) and the Weak Orthogonal Greedy Algo-
rithm (WOGA). We now give the corresponding definitions from Temlyakov
(2000b). Let a sequence τ = {tk}∞k=1, 0 ≤ tk ≤ 1, be given.

Weak Greedy Algorithm (WGA). We define f τ
0 := f . Then, for each

m ≥ 1 we have the following inductive definition.

(1) ϕτ
m ∈ D is any element satisfying

|〈f τ
m−1, ϕ

τ
m〉| ≥ tm sup

g∈D
|〈f τ

m−1, g〉|.

(2) f τ
m := f τ

m−1 − 〈f τ
m−1, ϕ

τ
m〉ϕτ

m.

(3) Gτ
m(f,D) :=

m
∑

j=1

〈f τ
j−1, ϕ

τ
j 〉ϕτ

j .

We note that, for a particular case tk = t, k = 1, 2, . . . , this algorithm
was considered in Jones (1987). Thus, the WGA is a generalization of the
PGA making it easier to construct an element ϕτ

m at the mth greedy step.
We point out that the WGA contains, in addition to the first (greedy) step,
the second step (see (2) and (3) in the above definition) where we update
an approximant by adding an orthogonal projection of the residual f τ

m−1

onto ϕτ
m. Therefore, the WGA provides for each f ∈ H an expansion into

a series (greedy expansion)

f ∼
∞

∑

j=1

cj(f)ϕτ
j , cj(f) := 〈f τ

j−1, ϕ
τ
j 〉.
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In general it is not an orthogonal expansion but it has some similar prop-
erties. The coefficients cj(f) of an expansion are obtained by the Fourier
formulas with f replaced by the residuals f τ

j−1. It is easy to see that

‖f τ
m‖2 = ‖f τ

m−1‖2 − |cm(f)|2.
We prove convergence of greedy expansion (see, for instance, Theorem 2.2.4
below), and therefore, from the above equality, we get for this expansion an
analogue of the Parseval formula for orthogonal expansions:

‖f‖2 =

∞
∑

j=1

|cj(f)|2.

Weak Orthogonal Greedy Algorithm (WOGA). We define fo,τ
0 := f ,

fo,τ
1 := f τ

1 , and ϕo,τ
1 := ϕτ

1 , where f τ
1 , ϕτ

1 are are given in the above defini-
tion of the WGA. Then, for each m ≥ 2 we have the following inductive
definition.

(1) ϕo,τ
m ∈ D is any element satisfying

|〈fo,τ
m−1, ϕ

o,τ
m 〉| ≥ tm sup

g∈D
|〈fo,τ

m−1, g〉|.

(2) Go,τ
m (f,D) := PHτ

m
(f), where Hτ

m := span(ϕo,τ
1 , . . . , ϕo,τ

m ).

(3) fo,τ
m := f − Go,τ

m (f,D).

It is clear that Gτ
m and Go,τ

m in the case tk = 1, k = 1, 2, . . . , coincide with
the PGA Gm and the OGA Go

m, respectively. It is also clear that the WGA
and the WOGA are more ready for implementation than the PGA and the
OGA. The WOGA has the same greedy step as the WGA and differs in
the construction of a linear combination of ϕ1, . . . , ϕm. In the WOGA we
do our best to construct an approximant out of Hm := span(ϕ1, . . . , ϕm):
we take an orthogonal projection onto Hm. Clearly, in this way we lose a
property of the WGA to build an expansion into a series in the case of the
WOGA. However, this modification pays off in the sense of improving the
convergence rate of approximation. To see this, compare Theorems 2.3.5
and 2.3.6.

There is one more greedy-type algorithm that works well for functions
from the convex hull of D±, where D± := {±g : g ∈ D}.

For a general dictionary D we define the class of functions

Ao
1(D, M) :=

{

f ∈ H : f =
∑

k∈Λ

ckwk, wk ∈ D, #Λ < ∞,
∑

k∈Λ

|ck| ≤ M

}

and we define A1(D, M) to be the closure (in H) of Ao
1(D, M). Furthermore,

we define A1(D) to be the union of the classes A1(D, M) over all M > 0.
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For f ∈ A1(D), we define the norm

|f |A1(D)

to be the smallest M such that f ∈ A1(D, M).
For M = 1 we denote A1(D) := A1(D, 1). We proceed to discuss the

relaxed type of greedy algorithms. We begin with the simplest one.

Relaxed Greedy Algorithm (RGA). Let f r
o := Rr

0(f) := Rr
0(f,D) := f

and Gr
0(f) := Gr

0(f,D) := 0. For m = 1, we define Gr
1(f) := Gr

1(f,D) :=
G1(f) and f r

1 := Rr
1(f) := Rr

1(f,D) := R1(f). For a function h ∈ H, let
g = g(h) denote the function from D± which maximizes 〈h, g〉 (we assume
the existence of such an element). Then, for each m ≥ 2 we inductively
define

Gr
m(f) := Gr

m(f,D) :=

(

1 − 1

m

)

Gr
m−1(f) +

1

m
g(Rr

m−1(f)),

f r
m := Rr

m(f) := Rr
m(f,D) := f − Gr

m(f).

There are several modifications of the Relaxed Greedy Algorithm (see, for
instance, Barron (1993) and DeVore and Temlyakov (1996)). Before giving
the definition of the Weak Relaxed Greedy Algorithm (WRGA), we make
one remark which helps to motivate the corresponding definition. Assume
Gm−1 ∈ A1(D) is an approximant to f ∈ A1(D) obtained at the (m − 1)th
step. The major idea of relaxation in greedy algorithms is to look for an
approximant at the mth step of the form Gm := (1−a)Gm−1 +ag, g ∈ D±,
0 ≤ a ≤ 1. This form guarantees that Gm ∈ A1(D). Thus we are looking for
co-convex approximants. The best we can do at the mth step is to achieve

δm := inf
g∈D±,0≤a≤1

‖f − ((1 − a)Gm−1 + ag)‖.

Let fn := f −Gn, n = 1, . . . , m. It is clear that for a given g ∈ D± we have

inf
a
‖fm−1 − a(g − Gm−1)‖2 = ‖fm−1‖2 − 〈fm−1, g − Gm−1〉2‖g − Gm−1‖−2,

and this infimum is attained for

a(g) = 〈fm−1, g − Gm−1〉‖g − Gm−1‖−2.

Next, it is not difficult to derive from the definition of A1(D) and from our
assumption on existence of a maximizer that, for any h ∈ H and u ∈ A1(D),
there exists g ∈ D± such that

〈h, g〉 ≥ 〈h, u〉. (2.1.4)

Taking h = fm−1 and u = f , we get from (2.1.4) that there exists gm ∈ D±

such that

〈fm−1, gm − Gm−1〉 ≥ 〈fm−1, f − Gm−1〉 = ‖fm−1‖2. (2.1.5)
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This implies in particular that we get for gm

‖gm − Gm−1‖ ≥ ‖fm−1‖ (2.1.6)

and 0 ≤ a(gm) ≤ 1. Thus,

δ2
m ≤ ‖fm−1‖2 − 1

4
sup

g∈D±

〈fm−1, g − Gm−1〉2.

We now give the definition of the WRGA for f ∈ A1(D).

Weak Relaxed Greedy Algorithm (WRGA). We define f0 := f and
G0 := 0. Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D± is any element satisfying

〈fm−1, ϕm − Gm−1〉 ≥ tm‖fm−1‖2. (2.1.7)

(2) Gm := Gm(f,D) := (1 − βm)Gm−1 + βmϕm,

βm := tm

(

1 +

m
∑

k=1

t2k

)−1

for m ≥ 1.

(3) fm := f − Gm.

2.2. Convergence

We begin this section with convergence of the Weak Orthogonal Greedy Al-
gorithm (WOGA). The following theorem was proved in Temlyakov (2000b).

Theorem 2.2.1. Assume
∞

∑

k=1

t2k = ∞. (2.2.1)

Then, for any dictionary D and any f ∈ H, we have for the WOGA

lim
m→∞

‖fo,τ
m ‖ = 0. (2.2.2)

Remark 2.2.2. It is easy to see that if D = B, an orthonormal basis, the
assumption (2.2.1) is also necessary for convergence (2.2.2) for all f .

Proof of Theorem 2.2.1. Let f ∈ H and let ϕo,τ
1 , ϕo,τ

2 , . . . be as given in the
definition of the WOGA. Let

Hn := Hτ
n = span(ϕo,τ

1 , . . . , ϕo,τ
n ).

It is clear that Hn ⊆ Hn+1, and therefore {PHn(f)} converges to some
function v. The following Lemma 2.2.3 says that v = f and completes the
proof of Theorem 2.2.1.
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Lemma 2.2.3. Assume that (2.2.1) is satisfied. Then, if {f τ
m}∞m=1 or

{fo,τ
m }∞m=1 converges, it converges to zero.

Proof of Lemma 2.2.3. We prove this lemma by contradiction. Let us
consider first the case of {f τ

m}∞m=1. Assume f τ
m → u = 0 as m → ∞. It is

clear that

sup
g∈D

|〈u, g〉| ≥ 2δ

with some δ > 0. Therefore, there exists N such that, for all m ≥ N , we
have

sup
g∈D

|〈f τ
m, g〉| ≥ δ.

From the definition of the WGA we get for all m > N

‖f τ
m‖2 = ‖f τ

m−1‖2 − |〈f τ
m−1, ϕ

τ
m〉|2 ≤ ‖f τ

N‖2 − δ2
m

∑

k=N+1

t2k,

which contradicts (2.2.1).
We now proceed to the case {fo,τ

m }∞m=1. Assume fo,τ
m → u = 0 as m → ∞.

Then, as in the above proof, there exist δ > 0 and N such that, for all
m ≥ N , we have

sup
g∈D

|〈fo,τ
m , g〉| ≥ δ.

Next, as in (2.1.3) we have

‖fo,τ
m ‖2 ≤ ‖fo,τ

m−1‖2 − t2m

(

sup
g∈D

|〈fo,τ
m−1, g〉|

)2
≤ ‖fo,τ

N ‖2 − δ2
m

∑

k=N+1

t2k,

which contradicts the divergence of
∑

k t2k.

Theorem 2.2.1 and Remark 2.2.2 show that (2.2.1) is a necessary and
sufficient condition on weakness sequence τ = {tk} in order that the WOGA
converges for each f and all D. Condition (2.2.1) can be rewritten as τ /∈
ℓ2. It turns out that the convergence of the PGA is more delicate. We
now proceed to the corresponding results. The following theorem gives a
criterion of convergence in a special case of monotone weakness sequences
{tk}. Sufficiency was proved in Temlyakov (2000b) and necessity in Livshitz
and Temlyakov (2001).

Theorem 2.2.4. In the class of monotone sequences τ = {tk}∞k=1, 1 ≥
t1 ≥ t2 ≥ · · · ≥ 0, the condition

∞
∑

k=1

tk
k

= ∞ (2.2.3)
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is necessary and sufficient for convergence of the Weak Greedy Algorithm
for each f and all Hilbert spaces H and dictionaries D.

Remark 2.2.5. We note that the sufficiency part of Theorem 2.2.4 (see
Temlyakov (2000b)) does not need the monotonicity of τ .

Proof of sufficiency condition in Theorem 2.2.4. This proof (see Temlyakov
(2000b)) is a refinement of the original proof of Jones (1987). The following
lemma, Lemma 2.2.6, combined with Lemma 2.2.3, implies sufficiency in
Theorem 2.2.4.

Lemma 2.2.6. Assume (2.2.3) is satisfied. Then {f τ
m}∞m=1 converges.

Proof of Lemma 2.2.6. It is easy to derive from the definition of the WGA
the following two relations:

f τ
m = f −

m
∑

j=1

〈f τ
j−1, ϕ

τ
j 〉ϕτ

j , (2.2.4)

‖f τ
m‖2 = ‖f‖2 −

m
∑

j=1

|〈f τ
j−1, ϕ

τ
j 〉|2. (2.2.5)

Let aj := |〈f τ
j−1, ϕ

τ
j 〉|. We get from (2.2.5) that

∞
∑

j=1

a2
j ≤ ‖f‖2. (2.2.6)

We take any two indices n < m and consider

‖f τ
n − f τ

m‖2 = ‖f τ
n‖2 − ‖f τ

m‖2 − 2〈f τ
n − f τ

m, f τ
m〉.

Let

θτ
n,m := |〈f τ

n − f τ
m, f τ

m〉|.
Using (2.2.4) and the definition of the WGA, we obtain, for all n < m and
all m such that tm+1 = 0,

θτ
n,m ≤

m
∑

j=n+1

|〈f τ
j−1, ϕ

τ
j 〉||〈f τ

m, ϕτ
j 〉| ≤

am+1

tm+1

m+1
∑

j=1

aj . (2.2.7)

We now need a property of ℓ2-sequences.

Lemma 2.2.7. Assume yj ≥ 0, j = 1, 2, . . . , and

∞
∑

k=1

tk
k

= ∞,
∞

∑

j=1

y2
j < ∞.
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Then

lim
n→∞

yn

tn

n
∑

j=1

yj = 0.

Proof. Let P (τ) := {n ∈ N : tn = 0}. Consider a series

∑

n∈P (τ)

tn
n

yn

tn

n
∑

j=1

yj . (2.2.8)

We shall prove that this series converges. It is clear that convergence of this
series together with the assumption

∑∞
k=1 tk/k = ∞ imply the statement of

Lemma 2.2.7.
We use the following known fact. If {yj}∞j=1 ∈ ℓ2 then {n−1

∑n
j=1 yj}∞n=1 ∈

ℓ2 (see Zygmund (1959, Chapter 1, Section 9)). By the Cauchy inequality,
we have

∑

n∈P (τ)

tn
n

yn

tn

n
∑

j=1

yj ≤
( ∞

∑

n=1

y2
n

)1/2( ∞
∑

n=1

(

n−1
n

∑

j=1

yj

)2)1/2

< ∞.

This completes the proof of Lemma 2.2.7.

Relation (2.2.7) and Lemma 2.2.7 imply that

lim
m→∞

max
n<m

θτ
n,m = 0.

It remains to use the following simple lemma.

Lemma 2.2.8. In a Banach space X, let a sequence {xn}∞n=1 be given,
such that, for any k, l, we have

‖xk − xl‖2 = yk − yl + ϑk,l,

where {yn}∞n=1 is a convergent sequence of real numbers and the real se-
quence ϑk,l satisfies the property

lim
l→∞

max
k<l

|ϑk,l| = 0.

Then {xn}∞n=1 converges.

The necessary condition in Theorem 2.2.4 was proved in Livshitz and
Temlyakov (2001). We do not present it here.

Theorem 2.2.4 solves the problem of convergence of the WGA in the
case of monotone weakness sequences. We now consider the case of general
weakness sequences. In Theorem 2.2.4 we reduced the proof of convergence
of the WGA with weakness sequence τ to some properties of ℓ2-sequences
with regard to τ . The sufficiency part of Theorem 2.2.4 was derived from
the following two statements.
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Proposition 2.2.9. Let τ be such that, for any {aj}∞j=1 ∈ ℓ2, aj ≥ 0,
j = 1, 2, . . . , we have

lim inf
n→∞

an

n
∑

j=1

aj/tn = 0.

Then, for any H, D, and f ∈ H we have

lim
m→∞

‖f τ
m‖ = 0.

Proposition 2.2.10. If τ satisfies condition (2.2.3) then τ satisfies the
assumption of Proposition 2.2.9.

We proved in Temlyakov (2002b) a criterion on τ for convergence of the
WGA. Let us introduce some notation. We define by V the class of sequences
x = {xk}∞k=1, xk ≥ 0, k = 1, 2, . . . , with the following property: there exists
a sequence 0 = q0 < q1 < · · · that may depend on x such that

∞
∑

s=1

2s

∆qs
< ∞ (2.2.9)

and
∞

∑

s=1

2−s
qs

∑

k=1

x2
k < ∞, (2.2.10)

where ∆qs := qs − qs−1.

Remark 2.2.11. It is clear from this definition that, if x ∈ V and for
some N and c, we have 0 ≤ yk ≤ cxk, k ≥ N , then y ∈ V.

Theorem 2.2.12. The condition τ /∈ V is necessary and sufficient for
convergence of all realizations of the Weak Greedy Algorithm with weakness
sequence τ for each f and all Hilbert spaces H and dictionaries D.

The proof of the sufficiency part of Theorem 2.2.12 is a refinement of
the corresponding proof of Theorem 2.2.4. The study of the behaviour
of sequences an

∑n
j=1 aj for {aj}∞j=1 ∈ ℓ2, aj ≥ 0, j = 1, 2, . . . , plays an

important role in both proofs. It turns out that the class V appears naturally
in the study of the above-mentioned sequences. We proved the following
theorem in Temlyakov (2002b).

Theorem 2.2.13. The following two conditions are equivalent:

τ /∈ V, (2.2.11)

∀{aj}∞j=1 ∈ ℓ2, aj ≥ 0, lim inf
n→∞

an

n
∑

j=1

aj/tn = 0. (2.2.12)
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Theorem 2.2.12 solves the problem of convergence of the WGA in a very
general situation. The sufficiency part of Theorem 2.2.12 guarantees that,
whenever τ /∈ V, the WGA converges for each f and all D. The necessity
part of Theorem 2.2.12 states that, if τ ∈ V, then there exist an element
f and a dictionary D such that some realization Gτ

m(f,D) of the WGA
does not converge to f . However, Theorem 2.2.12 leaves open the following
interesting and important problem. Let a dictionary D ⊂ H be given. Find
necessary and sufficient conditions on a weakness sequence τ in order that
Gτ

m(f,D) → f for each f ∈ H. The corresponding open problems for special
dictionaries are formulated in Temlyakov (2003a, pp. 78, 81). They concern
the following two classical dictionaries:

Π2 := {u(x)v(y) : u, v ∈ L2([0, 1]), ‖u‖2 = ‖v‖2 = 1},
and

R2 := {g(x) = r(ω · x) : ‖g‖2 = 1},
where r is a univariate function and ω·x is the scalar product of x, ‖x‖ℓ2 ≤ 1,
and a unit vector ω ∈ R

2.

2.3. Rate of convergence

2.3.1. Upper bounds for approximation by general dictionaries

We shall discuss here approximation from a general dictionary D. We begin
with a discussion of the approximation properties of the Relaxed Greedy
Algorithm. The result we give below in Theorem 2.3.2 is from DeVore
and Temlyakov (1996), and can be found in the paper of Jones (1992) in
a different form. We begin with the following elementary lemma about
numerical sequences.

Lemma 2.3.1. If A > 0 and {an}∞n=1 is a sequence of non-negative num-
bers satisfying a1 ≤ A and

am ≤ am−1 −
2

m
am−1 +

A

m2
, m = 2, 3, . . . , (2.3.1)

then

am ≤ A

m
. (2.3.2)

Proof. The proof is by induction. Suppose we have

am−1 ≤ A

m − 1

for some m ≥ 2. Then, from our assumption (2.3.1) we have

am ≤ A

m − 1

(

1 − 2

m

)

+
A

m2
= A

(

1

m
− 1

(m − 1)m
+

1

m2

)

≤ A

m
.
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If f ∈ Ao
1(D), then f =

∑

j cjgj , for some gj ∈ D and with
∑

j |cj | ≤ 1.
Since the functions gj all have norm one, it follows that

‖f‖ ≤
∑

j

|cj |‖gj‖ ≤ 1.

Since the functions g ∈ D have norm one, it follows that Gr
1(f) = G1(f) also

has norm at most one. By induction, we find that ‖Gr
m(f)‖ ≤ 1, m ≥ 1.

Theorem 2.3.2. For the Relaxed Greedy Algorithm we have, for each
f ∈ A1(D), the estimate

‖f − Gr
m(f)‖ ≤ 2√

m
, m ≥ 1. (2.3.3)

Proof. We use the abbreviation rm := Gr
m(f) and gm := g(Rr

m−1(f)).
From the definition of rm, we have

‖f − rm‖2 = ‖f − rm−1‖2 +
2

m
〈f − rm−1, rm−1 − gm〉 +

1

m2
‖rm−1 − gm‖2.

(2.3.4)
The last term on the right-hand side of (2.3.4) does not exceed 4/m2. For
the middle term, we have

〈f − rm−1, rm−1 − gm〉 = inf
g∈D±

〈f − rm−1, rm−1 − g〉

= inf
φ∈A1(D)

〈f − rm−1, rm−1 − φ〉

≤ 〈f − rm−1, rm−1 − f〉 = −‖f − rm−1‖2.

We substitute this in (2.3.4) to obtain

‖f − rm‖2 ≤
(

1 − 2

m

)

‖f − rm−1‖2 +
4

m2
. (2.3.5)

Thus the theorem follows from Lemma 2.3.1 with A=4 and am :=‖f−rm‖2.

We now turn our discussion to the approximation properties of the Pure
Greedy Algorithm and the Orthogonal Greedy Algorithm.

We shall need the following simple known lemma (see, for example, De-
Vore and Temlyakov (1996)).

Lemma 2.3.3. Let {am}∞m=1 be a sequence of non-negative numbers sat-
isfying the inequalities

a1 ≤ A, am+1 ≤ am(1 − am/A), m = 1, 2, . . . .

Then we have for each m

am ≤ A/m.
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Proof. The proof is by induction on m. For m = 1 the statement is true
by assumption. We assume am ≤ A/m and prove that am+1 ≤ A/(m + 1).
If am+1 = 0 this statement is obvious. Assume therefore that am+1 > 0.
Then we have

a−1
m+1 ≥ a−1

m (1 − am/A)−1 ≥ a−1
m (1 + am/A) = a−1

m + A−1 ≥ (m + 1)A−1,

which implies am+1 ≤ A/(m + 1) .

We now want to estimate the decrease in error provided by one step of
the Pure Greedy Algorithm. Let D be an arbitrary dictionary. If f ∈ H
and

ρ(f) := 〈f, g(f)〉/‖f‖, (2.3.6)

where as before g(f) ∈ D± satisfies

〈f, g(f)〉 = sup
g∈D±

〈f, g〉,

then

R(f)2 = ‖f − G(f)‖2 = ‖f‖2(1 − ρ(f)2). (2.3.7)

The larger ρ(f), the better the decrease of the error in the step of the Pure
Greedy Algorithm. The following lemma estimates ρ(f) from below.

Lemma 2.3.4. If f ∈ A1(D, M), then

ρ(f) ≥ ‖f‖/M. (2.3.8)

Proof. It is sufficient to prove (2.3.8) for f ∈ Ao
1(D, M) since the general

result follows from this by taking limits. We can write f =
∑

ckgk, where
this sum has a finite number of terms and gk ∈ D and

∑ |ck| ≤ M . Hence,

‖f‖2 = 〈f, f〉 =
〈

f,
∑

ckgk

〉

=
∑

ck〈f, gk〉 ≤ Mρ(f)‖f‖,

and (2.3.8) follows.

The following theorem was proved in DeVore and Temlyakov (1996).

Theorem 2.3.5. Let D be an arbitrary dictionary in H. Then, for each
f ∈ A1(D, M) we have

‖f − Gm(f,D)‖ ≤ Mm−1/6.

Proof. It is enough to prove the theorem for f ∈ A1(D, 1); the general
result then follows by rescaling. We shall use the abbreviated notation
fm := Rm(f) for the residual. Let

am := ‖fm‖2 = ‖f − Gm(f,D)‖2, m = 0, 1, . . . , f0 := f,

and define the sequence {bm}∞m=0 by

b0 := 1, bm+1 := bm + ρ(fm)‖fm‖, m = 0, 1, . . . .
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Since fm+1 := fm + ρ(fm)‖fm‖g(fm), we obtain by induction that

fm ∈ A1(D, bm), m = 0, 1, . . . ,

and consequently we have the following relations for m = 0, 1, . . . :

am+1 = am(1 − ρ(fm)2), (2.3.9)

bm+1 = bm + ρ(fm)a1/2
m , (2.3.10)

ρ(fm) ≥ a1/2
m b−1

m . (2.3.11)

The last two relations give

bm+1 = bm(1 + ρ(fm)a1/2
m b−1

m ) ≤ bm(1 + ρ(fm)2). (2.3.12)

Combining this inequality with (2.3.9) we find

am+1bm+1 ≤ ambm(1 − ρ(fm)4),

which in turn implies for all m

ambm ≤ a0b0 = ‖f‖2 ≤ 1. (2.3.13)

Further, using (2.3.9) and (2.3.11) we get

am+1 = am(1 − ρ(fm)2) ≤ am(1 − am/b2
m).

Since bn ≤ bn+1, this gives

an+1b
−2
n+1 ≤ anb−2

n (1 − anb−2
n ).

Applying Lemma 2.3.3 to the sequence (amb−2
m ) we obtain

amb−2
m ≤ m−1. (2.3.14)

Relations (2.3.13) and (2.3.14) imply

a3
m = (ambm)2amb−2

m ≤ m−1.

In other words,

‖fm‖ = a1/2
m ≤ m−1/6,

which proves the theorem.

The next theorem (DeVore and Temlyakov 1996) estimates the error in
approximation by the Orthogonal Greedy Algorithm.

Theorem 2.3.6. Let D be an arbitrary dictionary in H. Then, for each
f ∈ A1(D, M) we have

‖f − Go
m(f,D)‖ ≤ Mm−1/2.

Proof. The proof of this theorem is similar to the proof of Theorem 2.3.5
but technically even simpler. We can again assume that M = 1. We let
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fo
m := Ro

m(f) be the residual in the Orthogonal Greedy Algorithm. Then,
from the definition of Orthogonal Greedy Algorithm, we have

‖fo
m+1‖ ≤ ‖fo

m − G1(f
o
m,D)‖. (2.3.15)

From (2.3.7), we obtain

‖fo
m+1‖2 ≤ ‖fo

m‖2(1 − ρ(fo
m)2). (2.3.16)

By the definition of the Orthogonal Greedy Algorithm, Go
m(f) = PHmf and

hence fo
m = f − Go

m(f) is orthogonal to Go
m(f). Using this as in the proof

of Lemma 2.3.4, we obtain

‖fo
m‖2 = 〈fo

m, f〉 ≤ ρ(fo
m)‖fo

m‖.
Hence,

ρ(fo
m) ≥ ‖fo

m‖.
Using this inequality in (2.3.16), we find

‖fo
m+1‖2 ≤ ‖fo

m‖2(1 − ‖fo
m‖2).

In order to complete the proof it remains to apply Lemma 2.3.3 with A = 1
and am = ‖fo

m‖2.

2.3.2. Upper estimates for weak-type greedy algorithms

We begin this subsection with an error estimate for the Weak Orthogonal
Greedy Algorithm. The following theorem from Temlyakov (2000b) is a
generalization of Theorem 2.3.6.

Theorem 2.3.7. Let D be an arbitrary dictionary in H. Then, for each
f ∈ A1(D, M) we have

‖f − Go,τ
m (f,D)‖ ≤ M

(

1 +
m

∑

k=1

t2k

)−1/2

.

We now turn to the Weak Relaxed Greedy Algorithms. The following
theorem from Temlyakov (2000b) shows that the WRGA performs on the
A1(D, M) similar to the WOGA. We note that the approximation step of
building the Gm(f,D) in the WRGA is simpler than the corresponding step
of building the Go,τ

m (f,D) in the WOGA.

Theorem 2.3.8. Let D be an arbitrary dictionary in H. Then, for each
f ∈ A1(D, M) we have for the Weak Relaxed Greedy Algorithm

‖f − Gm(f,D)‖ ≤ 2M

(

1 +

m
∑

k=1

t2k

)−1/2

.
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We now proceed to the Weak Greedy Algorithm. The construction of an
approximant Gτ

m(f,D) in the WGA is the simplest out of the three types
of algorithms (WGA, WOGA, WRGA) discussed here. We pointed out
above that the WGA provides for each f ∈ H an expansion into a series
that satisfies an analogue of the Parseval formula. The following theorem
from Temlyakov (2000b) gives the upper bounds for the residual ‖f τ

m‖ of the
WGA that are not as good as in Theorems 2.3.7 and 2.3.8 for the WOGA
and WRGA, respectively. The next theorem, Theorem 2.3.10, shows that
the bound (2.3.17) is sharp in a certain sense.

Theorem 2.3.9. Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1 is a non-increasing sequence. Then, for f ∈ A1(D, M) we have

‖f − Gτ
m(f,D)‖ ≤ M

(

1 +

m
∑

k=1

t2k

)−tm/2(2+tm)

. (2.3.17)

In a particular case τ = {t}, (tk = t, k = 1, 2, . . .), (2.3.17) gives

‖f − Gt
m(f,D)‖ ≤ M(1 + mt2)−t/(4+2t), 0 < t ≤ 1. (2.3.18)

This estimate implies the inequality

‖f − Gt
m(f,D)‖ ≤ C1(t)m

−at|f |A1(D), (2.3.19)

with the exponent at approaching 0 linearly in t. We proved in Livshitz and
Temlyakov (2003) that this exponent cannot decrease to 0 at a slower rate
than linear.

Theorem 2.3.10. There exists an absolute constant b > 0 such that, for
any t > 0, we can find a dictionary Dt and a function ft ∈ A1(Dt) such that,
for some realization Gt

m(ft,Dt) of the Weak Greedy Algorithm, we have

lim inf
m→∞

‖ft − Gt
m(ft,Dt)‖mbt/|ft|A1(Dt) > 0. (2.3.20)

Remark 2.3.11. The estimate (2.3.18) implies that for small t the pa-
rameter a in (2.3.19) can be taken close to 1/4. The proof from Livshitz
and Temlyakov (2003) implies that the parameter b in (2.3.20) can be taken
close to (ln 2)−1.

We now discuss some further results on the rate of convergence of the
PGA and related results on greedy expansions. Theorem 2.3.5 states that
for a general dictionary D the Pure Greedy Algorithm provides the estimate

‖f − Gm(f,D)‖ ≤ |f |A1(D)m
−1/6.

The above estimate was improved a little in Konyagin and Temlyakov
(1999b) to

‖f − Gm(f,D)‖ ≤ 4|f |A1(D)m
−11/62.
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We now discuss recent progress on the following open problem (Temlyakov
2003a, p. 65, Open Problem 3.1). This problem is a central theoretical
problem in greedy approximation in Hilbert spaces.

Open problem. Find the order of decay of the sequence

γ(m) := sup
f,D,{Gm}

(

‖f − Gm(f,D)‖|f |−1
A1(D)

)

,

where the supremum is taken over all dictionaries D, all elements f ∈
A1(D) \ {0} and all possible choices of {Gm}.

Recently, the known upper bounds in approximation by the Pure Greedy
Algorithm were improved in Sil’nichenko (2004). Sil’nichenko proved the
estimate

γ(m) ≤ Cm
− s

2(2+s) ,

where s is a solution from [1, 1.5] of the equation

(1 + x)
1

2+x

(

2 + x

1 + x

)

− 1 + x

x
= 0.

Numerical calculations of s (see Sil’nichenko (2004)) give

s

2(2 + s)
= 0.182 · · · > 11/62.

The technique used in Sil’nichenko (2004) is a further development of a
method from Konyagin and Temlyakov (1999b).

There is also some progress in the lower estimates. The estimate

γ(m) ≥ Cm−0.27,

with a positive constant C, was proved in Livshitz and Temlyakov (2003).
For previous lower estimates see Temlyakov (2003a, p. 59). Very recently
Livshitz (2007b), using the technique from Livshitz and Temlyakov (2003),
proved the following lower estimate:

γ(m) ≥ Cm−0.1898. (2.3.21)

We mentioned above that the PGA and its generalization the Weak
Greedy Algorithm (WGA) give, for every element f ∈ H, a convergent
expansion in a series with respect to a dictionary D. We discuss a further
generalization of the WGA that also provides a convergent expansion. We
consider here a generalization of the WGA obtained by introducing to it
a tuning parameter b ∈ (0, 1] (see Temlyakov (2007a)). Let a sequence
τ = {tk}∞k=1, 0 ≤ tk ≤ 1, and a parameter b ∈ (0, 1] be given. We define the
Weak Greedy Algorithm with parameter b as follows.

Weak Greedy Algorithm with parameter b (WGA(b)). We define

f τ,b
0 := f . Then, for each m ≥ 1 we have the following inductive definition.
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(1) ϕτ,b
m ∈ D is any element satisfying

|〈f τ,b
m−1, ϕ

τ,b
m 〉| ≥ tm sup

g∈D
|〈f τ,b

m−1, g〉|.

(2) f τ,b
m := f τ,b

m−1 − b〈f τ,b
m−1, ϕ

τ,b
m 〉ϕτ,b

m .

(3) Gτ,b
m (f,D) := b

m
∑

j=1

〈f τ,b
j−1, ϕ

τ,b
j 〉ϕτ,b

j .

We note that the WGA(b) can be seen as a realization of the Approximate
Greedy Algorithm studied in Gribonval and Nielsen (2001a) and Galatenko
and Livshitz (2003, 2005).

We point out that the WGA(b), like the WGA, contains, in addition to the
first (greedy) step, the second step (see (2) and (3) in the above definition)
where we update an approximant by adding an orthogonal projection of the

residual f τ,b
m−1 onto ϕτ,b

m multiplied by b. The WGA(b), therefore, provides,
for each f ∈ H, an expansion into a series (greedy expansion):

f ∼
∞

∑

j=1

cj(f)ϕτ,b
j , cj(f) := b〈f τ,b

j−1, ϕ
τ,b
j 〉.

We begin with a convergence result from Temlyakov (2007a).

Theorem 2.3.12. Let τ /∈ V. Then the WGA(b) with b ∈ (0, 1] converges
for each f and all Hilbert spaces H and dictionaries D.

Theorem 2.3.12 is an extension of the corresponding result for the WGA
(see Theorem 2.2.12).

We proved in Temlyakov (2007a) the following convergence rate of the
WGA(b).

Theorem 2.3.13. Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1 is a non-increasing sequence and b ∈ (0, 1]. Then, for f ∈ A1(D)
we have

‖f − Gτ,b
m (f,D)‖ ≤

(

1 + b(2 − b)
m

∑

k=1

t2k

)−(2−b)tm/2(2+(2−b)tm)

. (2.3.22)

This theorem is an extension of the corresponding result for the WGA
(see Theorem 2.3.9). In the particular case tk = 1, k = 1, 2, . . . , we get the
following rate of convergence:

‖f − G1,b
m (f,D)‖ ≤ Cm−r(b), r(b) :=

2 − b

2(4 − b)
.

We note that r(1) = 1/6 and r(b) → 1/4 as b → 0. Thus we can offer the
following observation. At each step of the Pure Greedy Algorithm we can
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choose a fixed fraction of the optimal coefficient for that step instead of the
optimal coefficient itself. Surprisingly, this leads to better upper estimates
than those known for the Pure Greedy Algorithm.

2.4. Greedy algorithms for systems that are not dictionaries

In this section we discuss greedy algorithms with regard to a system G that
is not a dictionary. Here, we will discuss a variant of the RGA that is a
generalization of the version of the RGA suggested by Barron (1993). Let
H be a real Hilbert space and let G := {g} be a system of elements g ∈ H
such that ‖g‖ ≤ C0. Usually, in the theory of greedy algorithms we consider
approximation with regard to a dictionary D. One of the properties of a
dictionary D is that the closure of spanD is equal to H. In this section
we do not assume that the system G is a dictionary. In particular, we do
not assume that the closure of spanG is H. This setting is motivated by
applications in learning theory (see Section 2.8). We present here results
from Temlyakov (2005d). Let G± := {±g : g ∈ G} denote the symmetrized
system G, and let θ > 0.

RGA(θ) with respect to G. For f ∈ H we define f0 := f , G0 := G0(f) :=
0. Then, for each n ≥ 1 we have the following inductive definition.

(1) ϕn ∈ G± is an element satisfying (we assume existence)

〈fn−1, ϕn〉 = max
g∈G±

〈fn−1, g〉.

(2) Gn := Gn(f) :=

(

1 − θ

n + θ

)

Gn−1 +
θ

n + θ
ϕn, fn := f − Gn.

Let A1(G) denote the closure in H of the convex hull of G±. Then, for
f ∈ H there exists a unique element f ′ ∈ A1(G) such that

d(f, A1(G))H = ‖f − f ′‖ ≤ ‖f − φ‖, φ ∈ A1(G). (2.4.1)

In analysis of the RGA(θ) we will use the following simple lemma (see
DeVore and Temlyakov (1996) and Lemma 2.3.1 above for a variant of this
lemma). Our analysis is similar to that of DeVore and Temlyakov (1996)
and Lee, Bartlett and Williamson (1996).

Lemma 2.4.1. Let a sequence {an}∞n=0 of non-negative numbers satisfy
the relations (with β > 1, B > 0)

an ≤ n

n + β
an−1 +

B

(n + β)2
, n = 1, 2, . . . , a0 ≤ B

(β − 1)β
.

Then, for all n,

an ≤ B

(β − 1)(n + β)
.
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Proof. Setting A := B/(β − 1), we obtain by induction

an ≤ A

n − 1 + β

n

n + β
+

B

(n + β)2
=

A

n + β
− A(β − 1)

(n + β)(n − 1 + β)
+

B

(n + β)2
.

Taking into account the inequality

A(β − 1)

(n + β)(n − 1 + β)
≥ A(β − 1)

(n + β)2
=

B

(n + β)2
,

we complete the proof.

Theorem 2.4.2. For θ > 1 there exists a constant C(θ) such that, for
any f ∈ H, we have

‖fn‖2 ≤ d(f, A1(G))2H + C(θ)(‖f‖ + C0)
2n−1.

Proof. From the definition of Gn and fn we get, setting α := θ
n+θ ,

fn = f − Gn = (1 − α)fn−1 + α(f − ϕn)

and

‖fn‖2 = (1−α)2‖fn−1‖2 + 2α(1−α)〈fn−1, f −ϕn〉+ α2‖f −ϕn‖2. (2.4.2)

It is known and easy to check that for any h ∈ H we have

sup
g∈G±

〈h, g〉 = sup
φ∈A1(G)

〈h, φ〉. (2.4.3)

Denote f ′ as above and set f∗ := f − f ′. Using (2.4.3) and the definition of
ϕn, we obtain from (2.4.2)

‖fn‖2 ≤ (1 − α)2‖fn−1‖2 + 2α(1 − α)〈fn−1, f − f ′〉 + α2‖f − ϕn‖2

= (1 − α)(‖fn−1‖2 − α‖fn−1‖2 + 2α〈fn−1, f
∗〉 − α‖f∗‖2)

+ α(1 − α)‖f∗‖2 + α2‖f − ϕn‖2

≤ (1 − α)‖fn−1‖2 + α‖f∗‖2 + α2‖f − ϕn‖2.

This implies

‖fn‖2 − ‖f∗‖2 ≤ (1 − α)(‖fn−1‖2 − ‖f∗‖2) + α2(‖f‖ + C0)
2.

Setting an := ‖fn‖2−‖f∗‖2, β := θ, and applying Lemma 2.4.1, we complete
the proof.

Theorem 2.4.3. For θ > 1/2 there exists a constant C := C(θ, C0) such
that, for any f ∈ H, we have

‖f ′ − Gn(f)‖2 ≤ C/n.

Proof. If f ∈ A1(G) then the statement of Theorem 2.4.3 follows from
known results (see Barron (1993) and Theorem 2.3.2). If d(f, A1(G)) > 0,
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then property (2.4.1) implies that, for any φ ∈ A1(G), we have

〈f∗, φ − f ′〉 ≤ 0. (2.4.4)

It follows from the definition of fn that

fn =

(

1 − θ

n + θ

)

fn−1 +
θ

n + θ
(f − ϕn).

We set f ′
n := fn − f∗. Then, we get from the above representation

f ′
n =

(

1 − θ

n + θ

)

f ′
n−1 +

θ

n + θ
(f ′ − ϕn).

We note that f ′
n = f ′ − Gn(f). Let us estimate

‖f ′
n‖2 = ‖f ′

n−1‖2

(

1 − θ

n + θ

)2

(2.4.5)

+
2θ

n + θ

(

1 − θ

n + θ

)

〈f ′
n−1, f

′ − ϕn〉 +
θ2

(n + θ)2
‖f ′ − ϕn‖2.

Next,

〈f ′
n−1, f

′ − ϕn〉 = 〈f ′
n−1 + f∗, f ′ − ϕn〉 − 〈f∗, f ′ − ϕn〉

= 〈fn−1, f
′ − ϕn〉 + 〈f∗, ϕn − f ′〉. (2.4.6)

First, we prove that

〈fn−1, f
′ − ϕn〉 ≤ 0. (2.4.7)

It easily follows from f ′ ∈ A1(G) that

〈fn−1, f
′〉 ≤ max

g∈G±
〈fn−1, g〉. (2.4.8)

By the definition of ϕn we get

max
g∈G±

〈fn−1, g〉 = 〈fn−1, ϕn〉. (2.4.9)

Thus, (2.4.7) follows from (2.4.8) and (2.4.9).
Secondly, we note that (2.4.4) implies

〈f∗, ϕn − f ′〉 ≤ 0. (2.4.10)

Therefore, by (2.4.6), (2.4.7), and (2.4.10) we obtain

〈f ′
n−1, f

′ − ϕn〉 ≤ 0. (2.4.11)

Substitution of (2.4.11) in (2.4.5) gives

‖f ′
n‖2 ≤ ‖f ′

n−1‖2

(

1 − 2θ

n + θ

)

+
θ2

(n + θ)2
(‖f ′

n−1‖2 + ‖f ′ − ϕn‖2). (2.4.12)
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Using bounds ‖f ′
n−1‖ ≤ C0 and ‖f ′ − ϕn‖ ≤ 2C0, we find

‖f ′
n‖2 ≤ ‖f ′

n−1‖2

(

1 − 2θ

n + θ

)

+ 5C2
0θ2/(n + θ)2.

We note that

1 − 2θ

n + θ
< 1 − 2θ

n + 2θ
.

We now apply Lemma 2.4.1 with an = ‖f ′
n‖2, β = 2θ, and get

‖f ′
n‖2 ≤ C(θ, C0)/n. (2.4.13)

This completes the proof.

2.5. Saturation property of greedy-type algorithms

In this section we shall give an example from DeVore and Temlyakov (1996)
which shows that replacing a dictionary B given by an orthogonal basis by
a non-orthogonal redundant dictionary D may damage the efficiency of the
Pure Greedy Algorithm. The dictionary D in our example differs from the
dictionary B by the one addition of the element g for a certain suitably
chosen function g.

Let B := {hk}∞k=1 be an orthonormal basis in a Hilbert space H. Consider
the following element:

g := Ah1 + Ah2 + aA
∑

k≥3

(k(k + 1))−1/2hk, (2.5.1)

with

A := (33/89)1/2 and a := (23/11)1/2.

Then ‖g‖ = 1. We define the dictionary D := B ∪ {g}.
Theorem 2.5.1. For the function

f := h1 + h2,

we have

‖f − Gm(f)‖ ≥ m−1/2, m ≥ 4.

Proof. We shall examine the steps of the Pure Greedy Algorithm applied
to the function f = h1 + h2. We shall use the abbreviated notation fm :=
Rm(f) := f − Gm(f) for the residual at step m.

First step. We have

〈f, g〉 = 2A > 1, |〈f, hk〉| ≤ 1, k = 1, 2, . . . .

This implies

G1(f, D) = 〈f, g〉g,
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and

f1 = f − 〈f, g〉g = (1 − 2A2)(h1 + h2) − 2aA2
∑

k≥3

(k(k + 1))−1/2hk.

Second step. We have

〈f1, g〉 = 0, 〈f1, hk〉 = (1 − 2A2), k = 1, 2, 〈f1, h3〉 = −aA23−1/2.

Comparing 〈f1, h1〉 and |〈f1, h3〉| we get

|〈f1, h3〉| = (23/89)(33/23)1/2 > 23/89 = 1 − 2A2 = 〈f1, h1〉.
This implies that the second approximation G1(f1, D) is 〈f1, h3〉h3 and

f2 = f1 − 〈f1, h3〉h3 = (1 − 2A2)(h1 + h2) − 2aA2
∑

k≥4

(k(k + 1))−1/2hk.

Third step. We have

〈f2, g〉 = −〈f1, h3〉〈h3, g〉 = (A/2)(23/89),

〈f2, h1〉 = 〈f2, h2〉 = 1 − 2A2 = 23/89,

〈f2, h4〉 = −aA25−1/2 = −(23/89)(99/115)1/2.

Therefore, the third approximation should be 〈f2, h1〉h1 or 〈f2, h2〉h2. Let
us take the first of these so that

f3 = f2 − 〈f2, h1〉h1.

Fourth step. It is clear that for all k = 1 we have

〈f3, hk〉 = 〈f2, hk〉.
This equality and the calculations from the third step show that it is suffi-
cient to compare 〈f3, h2〉 and 〈f3, g〉 . We have

〈f3, g〉 = 〈f2, g〉 − 〈f2, h1〉〈h1, g〉 = −(23/89)(A/2).

This means that

f4 = f3 − 〈f3, h2〉h2 = −2aA2
∑

k≥4

(k(k + 1))−1/2hk. (2.5.2)

mth step (m > 4). We prove by induction that for all m ≥ 4 we have

fm = −2aA2
∑

k≥m

(k(k + 1))−1/2hk. (2.5.3)

For m = 4 this relation follows from (2.5.2). We assume we have proved
(2.5.3) for some m and derive that (2.5.3) also holds true for m + 1. To
find fm+1, we only have to compare the two inner products: 〈fm, hm〉 and
〈fm, g〉. We have

|〈fm, hm〉| = 2aA2(m(m + 1))−1/2,
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and

|〈fm, g〉| = 2a2A3
∑

k≥m

(k(k + 1))−1 = 2a2A3m−1.

Since

(|〈fm, g〉|/|〈fm, hm〉|)2 = (aA)2(1 + 1/m) ≤ 345/356 < 1,

we have that

|〈fm, g〉| < |〈fm, hm〉|, m ≥ 4.

This proves (2.5.3) with m replaced by m + 1.
From (2.5.3), we obtain

‖f − Gm(f, D)‖ = ‖fm‖ = 2aA2m−1/2 > m−1/2, m ≥ 4.

2.6. Lebesgue-type inequalities for greedy approximation

Lebesgue proved the following inequality: for any 2π-periodic continuous
function f we have

‖f − Sn(f)‖∞ ≤
(

4 +
4

π2
ln n

)

En(f)∞, (2.6.1)

where Sn(f) is the nth partial sum of the Fourier series of f and En(f)∞ is
the error of the best approximation of f by the trigonometric polynomials
of order n in the uniform norm ‖ · ‖∞. The inequality (2.6.1) relates the
error of a particular method (Sn) of approximation by the trigonometric
polynomials of order n to the best-possible error En(f)∞ of approximation
by the trigonometric polynomials of order n. By a Lebesgue-type inequality
we mean an inequality that provides an upper estimate for the error of a
particular method of approximation of f by elements of a special form,
say, form A, by the best-possible approximation of f by elements of the
form A. In the case of approximation with regard to bases (or minimal
systems), the Lebesgue-type inequalities are known both in linear and in
nonlinear settings (see Chapter 1 and surveys by Konyagin and Temlyakov
(2002) and Temlyakov (2003a)). It would be very interesting to prove the
Lebesgue-type inequalities for redundant systems (dictionaries). However,
there are substantial difficulties.

We begin our discussion with the Pure Greedy Algorithm (PGA). It is
natural to compare performance of the PGA with the best m-term approx-
imation with regard to a dictionary D. We let Σm(D) denote the collection
of all functions (elements) in H which can be expressed as a linear combi-
nation of at most m elements of D. Thus, each function s ∈ Σm(D) can be
written in the form

s =
∑

g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,
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where the cg are real or complex numbers. In some cases, it may be possible
to write an element from Σm(D) in this form in more than one way. The
space Σm(D) is not linear: the sum of two functions from Σm(D) is generally
not in Σm(D).

For a function f ∈ H we define its best m-term approximation error:

σm(f) := σm(f,D) := inf
s∈Σm(D)

‖f − s‖.

It seems there is no hope of proving a non-trivial Lebesgue-type inequality
for the PGA in the case of an arbitrary dictionary D. This pessimism
is based on the following result from DeVore and Temlyakov (1996) (see
Section 2.5).

Let B := {hk}∞k=1 be an orthonormal basis in a Hilbert space H. Consider
the following element:

g := Ah1 + Ah2 + aA
∑

k≥3

(k(k + 1))−1/2hk,

with

A := (33/89)1/2 and a := (23/11)1/2.

Then ‖g‖ = 1. We define the dictionary D = B ∪ {g}. It was proved in
DeVore and Temlyakov (1996) (see Section 2.5 above) that, for the function

f = h1 + h2,

we have

‖f − Gm(f,D)‖ ≥ m−1/2, m ≥ 4.

It is clear that σ2(f,D) = 0.
Therefore, we look for conditions on a dictionary D that allow us to prove

Lebesgue-type inequalities. The condition D = B, an orthonormal basis for
H, guarantees that

‖Rm(f,B)‖ = σm(f,B).

This is an ideal situation. The results that we will discuss here concern the
case when we replace an orthonormal basis B by a dictionary that is, in a
certain sense, not far from an orthonormal basis.

Let us begin with results from Donoho, Elad and Temlyakov (2007) that
are close to results from Temlyakov (1999). We give a definition of a
λ-quasi-orthogonal dictionary with depth D. When D = ∞ this defini-
tion coincides with the definition of a λ-quasi-orthogonal dictionary from
Temlyakov (1999).

Definition 2.6.1. We say D is a λ-quasi-orthogonal dictionary with depth
D if, for any n ∈ [1, D] and any gi ∈ D, i = 1, . . . , n, there exists a collection
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ϕj ∈ D, j = 1, . . . , J , J ≤ N := λn, with the properties

gi ∈ XJ := span(ϕ1, . . . , ϕJ), i = 1, . . . , n,

and for any f ∈ XJ we have

max
1≤j≤J

|〈f, ϕj〉| ≥ N−1/2‖f‖.

Remark 2.6.2. It is clear that an orthonormal dictionary is a 1-quasi-
orthogonal dictionary.

The following theorem for D = ∞ was established in Temlyakov (1999).
It is pointed out in Donoho et al. (2007) that the proof from Temlyakov
(1999) also works in the case D < ∞, and gives the following result.

Theorem 2.6.3. Let a given dictionary D be λ-quasi-orthogonal with
depth D, and let 0 < r < (2λ)−1 be a real number. Then, for any f
such that

σm(f,D) ≤ m−r, m = 1, 2, . . . , D,

we have

‖fm‖ = ‖f − Gm(f,D)‖ ≤ C(r, λ)m−r, m ∈ [1, D/2].

In this section we consider dictionaries that have become popular in signal
processing. Denote

M(D) := sup
g �=h;g,h∈D

|〈g, h〉|,

the coherence parameter of a dictionary D. For an orthonormal basis B we
have M(B) = 0. It is clear that the smaller M(D), the more D resembles
an orthonormal basis. However, we should note that in the case M(D) > 0
the D can be a redundant dictionary. We showed in Donoho et al. (2007)
(see Proposition 2.1) that a dictionary with coherence M := M(D) is a
(1 + 4δ)-quasi-orthogonal dictionary with depth δ/M , for any δ ∈ (0, 1/7].
Therefore, Theorem 2.6.3 applies to M -coherent dictionaries. We proved in
Donoho et al. (2007) a general Lebesgue-type inequality for the PGA with
regard to an M -coherent dictionary.

Theorem 2.6.4. Let a dictionary D have the mutual coherence M =
M(D). Then, for any S ≤ 1/(2M) we have the following inequality:

‖fS‖2 ≤ 2‖f‖(σS(f,D) + 5MS‖f‖). (2.6.2)

As a direct corollary of this theorem we obtain the following inequality
for functions f that allow an S-sparse representation in D (σS(f) = 0):

‖fS‖ ≤ (10MS)1/2‖f‖.
Inequality (2.6.2) is the first Lebesgue-type inequality for the PGA in the
case of incoherent dictionary D.
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We now proceed to a discussion of the Orthogonal Greedy Algorithm
(OGA). It is clear from the definition of the OGA that at each step we have
(see (2.1.3))

‖fo
m‖2 ≤ ‖fo

m−1‖2 − |〈fo
m−1, g(fo

m−1)〉|2.
We noted in Donoho et al. (2007) that the use of this inequality instead of
the equality

‖fm‖2 = ‖fm−1‖2 − |〈fm−1, g(fm−1)〉|2,
which holds for the PGA, allows us to prove an analogue of Theorem 2.6.3
for the OGA. The proof repeats the corresponding proof from Temlyakov
(1999). We formulate this as a remark.

Remark 2.6.5. Theorem 2.6.3 holds for the OGA instead of the PGA
(for ‖fo

m‖ instead of ‖fm‖).
The first general Lebesgue-type inequality for the OGA for the M -coher-

ent dictionary was obtained in Gilbert, Muthukrishnan and Strauss (2003).
They proved that

‖fo
m‖ ≤ 8m1/2σm(f) for m < 1/(32M).

The constants in this inequality were improved in Tropp (2004) (see also
Donoho, Elad and Temlyakov (2006)):

‖fo
m‖ ≤ (1 + 6m)1/2σm(f) for m < 1/(3M). (2.6.3)

We proved in Donoho et al. (2007) an analogue of (2.6.2) for the OGA.

Theorem 2.6.6. Let a dictionary D have the mutual coherence M =
M(D). Then, for any S ≤ 1/(2M) we have the following inequalities:

‖fo
S‖2 ≤ 2‖fo

k‖(σS−k(f
o
k ) + 3MS‖fo

k‖), 0 ≤ k ≤ S. (2.6.4)

Inequality (2.6.4) can be used to improve (2.6.3) for small m. We proved
in Donoho et al. (2007) the following inequality.

Theorem 2.6.7. Let a dictionary D have the mutual coherence M =
M(D). Assume m ≤ 0.05M−2/3. Then, for l ≥ 1 satisfying 2l ≤ log m we
have

‖fo
m(2l−1)‖ ≤ 6m2−l

σm(f).

Corollary 2.6.8. Let a dictionary D have the mutual coherence M =
M(D). Assume m ≤ 0.05M−2/3. Then we have

‖fo
[m log m]‖ ≤ 24σm(f). (2.6.5)

Inequality (2.6.5) is an almost perfect Lebesgue-type inequality. It has the
following two deficiencies. First, clearly we would like to replace [m log m]
by m or Cm in the number of iterations of the OGA. However, this is a
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minor drawback of (2.6.5). Second, as is stated in Corollary 2.6.8, inequality
(2.6.5) holds for only a small number of iterations: m ≤ 0.05M−2/3. It
would be interesting to know if we can push the limit from M−2/3 to a
natural limit of M−1.

The above results show that the smaller the coherence parameter M(D),
the better the performance of the OGA. In particular, (2.6.3) implies that if
f is S-sparse with respect to D (σS(f,D) = 0), then fo

S = 0, provided that
S < 1/(3M). This means that the OGA exactly recovers S-sparse elements
with respect to the M -coherent dictionary D if S < 1/(3M). This is a very
nice property of M -coherent dictionaries, which is important in applications
(see Donoho et al. (2006) for a discussion). Therefore, it is very desirable
to build dictionaries with a small coherent parameter M(D). A rigorous
setting in this regard is the following. Let H = R

d and let the cardinality
of D be equal to N (|D| = N). Find

c(N, d) := inf
D,|D|=N

M(D)

and describe the Grassmannian dictionaries for which M(D) = c(N, d),
|D| = N .

In a special case when D is assumed to be a frame, the dictionaries
(frames) described above are known as Grassmannian frames. The theory
of Grassmannian frames is a beautiful mathematical theory that has con-
nections to areas such as spherical codes, algebraic geometry, graph theory,
and sphere packings (see Stromberg and Heath (2003)). Some fundamental
problems of this theory are still open. For instance, it is known that in the
case of frames we have

cframe(N, d) ≥
(

N − d

d(N − 1)

)1/2

. (2.6.6)

However, it is not known for which pairs (N, d) we have equality in (2.6.6).

2.7. Some further remarks

In the Preface we mentioned two classical examples of redundant dictionaries:

Π2 :=
{

u(x1)v(x2) : (x1, x2) ∈ [0, 1]2, ‖u‖L2([0,1]) = ‖v‖L2([0,1]) = 1
}

,

R2 :=
{

r(ω · x) : x, ω ∈ R
d, ‖x‖ℓ2 ≤ 1, ‖ω‖ℓ2 = 1, ‖r(ω · x)‖L2(Bd

2 ) = 1
}

.

The reader can find detailed discussion of the m-term approximation with
regard to these dictionaries in the survey of Temlyakov (2003a). The dictio-
nary Π2 is a very interesting example from the point of view of greedy ap-
proximation. As mentioned in the Preface, we have for each f ∈ L2([0, 1]2)

‖f − Gm(f, Π2)‖L2([0,1]2) = σm(f, Π2)L2([0,1]2), (2.7.1)
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for the PGA. This means that the Π2 is ideally designed for greedy ap-
proximation. Clearly, all the general results of this chapter apply in the
case D = Π2. Surprisingly, we do not quite understand how to use specific
properties of Π2 in greedy approximation. For instance (see the end of Sec-
tion 2.2), there has been no progress on the following open problem (see
Temlyakov (2003a), p.78). Find the necessary and sufficient conditions on
a weakness sequence τ to guarantee convergence of the WGA with regard
to Π2 for each f ∈ L2([0, 1]2).

We note that the Schmidt expansion formula for f ∈ L2([0, 1]2),

f(x1, x2) =
∞

∑

j=1

sj(Jf )φj(x1)ψj(x2),

points out the importance of the sequence {sj(Jf )} of singular numbers of
the integral operator Jf associated with f . There is an extensive literature
devoted to estimating sj(Jf ) and σm(f, Π2) (in different norms) in terms of
smoothness of f . We mention some of the papers: Fredholm (1903), Weyl
(1911), Hille and Tamarkin (1931), Smithies (1937), Birman and Solomyak
(1977), Cochran (1977) and Temlyakov (1989b, 1990, 1992a, 1992b, 1993b).
For a further discussion see the survey of Temlyakov (2003a).

The dictionary R2 is not as good as Π2 for greedy approximation. There
are some weaker analogues of (2.7.1) for greedy approximation with regard
to R2 (see Maiorov, Oskolkov and Temlyakov (2002)). However, as in the
case of Π2, we do not know how to use specific features of R2 in greedy
approximation. There has also been no progress on an open problem (see
Temlyakov (2003a, p. 81)), similar to the one mentioned above, on conver-
gence of the WGA with regard to R2.

We now proceed to a discussion of some recent results on simultaneous
greedy approximation. A new ingredient of the papers of Lutoborski and
Temlyakov (2003), Leviatan and Temlyakov (2005, 2006) and Temlyakov
(2004) is the move from approximating a single element f , to simultaneous
approximation of a set of elements f1, . . . , fN . We will give a descrip-
tion of some results from Lutoborski and Temlyakov (2003), Leviatan and
Temlyakov (2006) and Temlyakov (2004). The main purpose of the above
papers is to construct greedy-type expansions,

f i ∼
∞

∑

j=1

ci
j(f)ϕj , ci

j(f) := 〈f i
j−1, ϕj〉, (2.7.2)

for a given finite set of elements f1, . . . , fN , simultaneously with the same
sequence {ϕj} for all f i, i = 1, . . . , N . The first result in this direction
was obtained in Lutoborski and Temlyakov (2003). The Vector Greedy
Algorithms that are designed for the purpose of constructing mth greedy
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approximants, simultaneously for a given finite number of elements, were
introduced and studied in Lutoborski and Temlyakov (2003).

Vector Weak Greedy Algorithm (VWGA). Let a vector of elements

f i ∈ H, i = 1, . . . , N be given. We write f i,v,τ
0 := f i. Then, for each m ≥ 1

we have the following inductive definition.

(1) Let ϕv,τ
m ∈ D be any element satisfying

max
i

|〈f i,v,τ
m−1, ϕ

v,τ
m 〉| ≥ tm max

i
sup
g∈D

|〈f i,v,τ
m−1, g〉|. (2.7.3)

(2) f i,v,τ
m := f i,v,τ

m−1 − 〈f i,v,τ
m−1, ϕ

v,τ
m 〉ϕv,τ

m , i = 1, . . . , N.

(3) Gv,τ
m (f i,D) :=

m
∑

j=1

〈f i,v,τ
j−1 , ϕv,τ

j 〉ϕv,τ
j , i = 1, . . . , N.

It was proved in Lutoborski and Temlyakov (2003) that the VWGA con-
verges for τ /∈ V. Therefore the VWGA with τ /∈ V provides the convergent
expansions

f i =
∞

∑

j=1

bi
jgj , gj ∈ D,

with the property

‖f i‖2 =
∞

∑

j=1

|bi
j |2, i = 1, . . . , N.

The following estimate of the rate of convergence of the VWGA was obtained
in Lutoborski and Temlyakov (2003).

Theorem 2.7.1. Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1, tk = t, k = 1, . . . , 0 < t < 1. Then, for any vector of elements
f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N , we have

N
∑

i=1

‖f i,v,τ
m ‖2 ≤

(

1 +
mt2

N

)−t/(2N+t)

N
2N+2t
2N+t .

Comparing Theorem 2.3.9 with τ = {t} with Theorem 2.7.1, we see that
the exponent t/(2N + t) of decay is seriously affected by the number N of
simultaneously approximated elements. Also, simultaneous approximation

brings an extra factor, N
2N+2t
2N+t ≍ N . In Leviatan and Temlyakov (2006)

we improve the exponent of decay, replacing t/(2N + t) by t/(2N1/2 + t),
and we get the worse constant N2 instead of N . Here is the corresponding
theorem from Leviatan and Temlyakov (2006).
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Theorem 2.7.2. Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1 is a non-increasing sequence. Then, for any vector of elements
f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N , we have

N
∑

i=1

‖f i,v,τ
m ‖2 ≤ N2

(

1 +
1

N

m
∑

k=1

t2k

)
−tm

2N1/2+tm
.

In addition to the VWGA the following two modifications of the VWGA
were considered in Leviatan and Temlyakov (2006). The modifications differ
from the VWGA only in the first step. In the first step of the Simultaneous
Weak Greedy Algorithm 1 (SWGA1), we have the following.

(1)[SWGA1] We look for any ϕs1,τ
m ∈ D satisfying

( N
∑

i=1

|〈f i
m−1, ϕ

s1,τ
m 〉|2

)1/2

≥ tm max
i

sup
g∈D

|〈f i
m−1, g〉|, f i

m−1 := f i,s1,τ
m−1 .

(2.7.4)
The first step of the Simultaneous Weak Greedy Algorithm 2 (SWGA2) is
then as follows.

(1)[SWGA2] We look for any ϕs2,τ
m ∈ D satisfying

( N
∑

i=1

|〈f i
m−1, ϕ

s2,τ
m 〉|2

)1/2

≥ tm sup
g∈D

( N
∑

i=1

|〈f i
m−1, g〉|2

)1/2

, f i
m−1 := f i,s2,τ

m−1 .

(2.7.5)
Clearly, any ϕm satisfying (2.7.3) or (2.7.5) also satisfies (2.7.4). Thus, any
upper estimate for the SWGA1 yields an upper estimate for both the VWGA
and the SWGA2. It was proved in Leviatan and Temlyakov (2006) that
Theorem 2.7.2 holds for both variants of the Simultaneous Weak Greedy
Algorithm.

We proved in Temlyakov (2004) the following estimate that improves
the estimates in Theorems 2.7.1 and 2.7.2. It combines good features of
estimates from Theorems 2.7.1 and 2.7.2. We proved in Temlyakov (2004)
an estimate with the exponent t/(2N1/2 + t) from Theorem 2.7.2 and with
the constant N as in Theorem 2.7.1. Let s stand for either v or s1 or s2.

Theorem 2.7.3. Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1, tk = t ∈ (0, 1], k = 1, 2, . . . . Then, for any vector of elements
f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N , we have

N
∑

i=1

‖f i,s,τ
m ‖2 ≤ N

(

1 +
1

N
mt2

)
−t

2N1/2+t

.

Theorem 2.7.4. Let D be an arbitrary dictionary in H. Assume τ :=
{tk}∞k=1 is a non-increasing sequence. Then, for any vector of elements
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f1, . . . , fN , f i ∈ A1(D), i = 1, . . . , N , we have

N
∑

i=1

‖f i,s,τ
m ‖2 ≤ CN

(

N +
m

∑

k=1

t2k

)
−tm

2N1/2+tm
,

with an absolute constant C = e2/e < 3.

Let us make some comments on proofs of Theorems 2.7.1–2.7.4. The
proof of Theorem 2.7.1 from Lutoborski and Temlyakov (2003) is a modifi-
cation of the proof of Theorem 2.3.9 from Temlyakov (2000b) to the vector
case. This proof does not use Theorem 2.3.9. The proof of Theorem 2.7.2
from Leviatan and Temlyakov (2006) directly uses Theorem 2.3.9. In Levi-
atan and Temlyakov (2006) we interpret a simultaneous approximation of
f1, . . . , fN in H with respect to D as an approximation of F = (f1, . . . , fN )
in HN := H × · · · × H with respect to a special dictionary DN ⊂ HN built
from D. The proof of Theorems 2.7.3 and 2.7.4 is more like the proof of
Theorem 2.7.1. It is a modification of the proof of Theorem 2.3.9.

2.8. Application of greedy algorithms in learning theory

We discuss in this section some mathematical aspects of supervised learning
theory. Supervised learning, or learning from examples, refers to a process
that builds on the base of available data of inputs xi and outputs yi, i =
1, . . . , m, a function that best represents the relation between the inputs
x ∈ X and the corresponding outputs y ∈ Y . The central question is how
well this function estimates the outputs for general inputs. This is a big
area of research both in non-parametric statistics and in learning theory.

A standard mathematical framework for the setting of the above learning
problem is the following (Cucker and Smale 2001, Poggio and Smale 2003,
DeVore, Kerkyacharian, Picard and Temlyakov 2004, 2006, Konyagin and
Temlyakov 2004, 2007, Temlyakov 2005c, 2005d, 2006d). Let X ⊂ R

d,
Y ⊂ R be Borel sets, and let ρ be a Borel probability measure on Z = X×Y .
For f : X → Y define the error

E(f) :=

∫

Z
(f(x) − y)2 dρ.

Consider ρ(y|x), the conditional (with respect to x) probability measure
on Y , and ρX , the marginal probability measure on X (for S ⊂ X, ρX(S) =
ρ(S×Y )). Here we consider only bounded sets Y and, therefore, there exists
a regular conditional probability ρ(·|x). Define fρ(x) to be the conditional
expectation of y with respect to measure ρ(·|x). The function fρ is known
in statistics as the regression function of ρ. It is clear that if fρ ∈ L2(ρX)
then it minimizes the error E(f) over all f ∈ L2(ρX): E(fρ) ≤ E(f), f ∈
L2(ρX). Thus, in the sense of error E(·), the regression function fρ is optimal
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to describe the relation between inputs x ∈ X and outputs y ∈ Y . Now,
our goal is to find an estimator fz, given data z = ((x1, y1), . . . , (xm, ym))
that approximates fρ well with high probability. We assume that (xi, yi),
i = 1, . . . , m are independent and distributed according to ρ. We note that
it is easy to see that, for any f ∈ L2(ρX),

E(f) − E(fρ) = ‖f − fρ‖2
L2(ρX).

The fundamental problem of learning theory is how to build a good es-
timator. It is well known in statistics that the following way of building
fz provides a near-optimal estimator in many cases. First, choose the right
hypothesis space H. Second, construct fz,H ∈ H as the empirical optimum
(least squares estimator). We explain this in more detail. We define

fz,H = arg min
f∈H

Ez(f),

where

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2

is the empirical error (risk) of f . This fz,H is called the empirical optimum

or the Least Squares Estimator (LSE). Clearly, a crucial role in this approach
is played by a choice of the hypothesis space H. In other words, we need to
begin our construction of an estimator with a decision on what should be
the form of the estimator. In this section we discuss only the case relevant
to the use of nonlinear approximation, in particular, greedy approximation
in such a construction. We want to construct a good estimator that will
provide high accuracy and that will be practically implementable. We will
discuss a realization of this plan in several stages. We begin with results on
accuracy. We will give a presentation in a rather general form of nonlinear
approximation.

Let D(n, q) := {gn
l }Nn

l=1, n ∈ N, Nn ≤ nq, q ≥ 1, be a system of bounded
functions defined on X. We will consider a sequence {D(n, q)}∞n=1 of such
systems. In building an estimator, based on D(n, q), we are going to use
n-term approximations with regard to D(n, q):

GΛ :=
∑

l∈Λ

clg
n
l , |Λ| = n. (2.8.1)

A standard assumption that we make in supervised learning theory is that
|y| ≤ M almost surely. This implies that we always assume that |fρ| ≤ M .
Denoting ‖f‖B(X) := supx∈X |f(x)|, we rewrite the above assumption in
the form ‖fρ‖B(X) ≤ M . It is clear that with such an assumption it is
natural to restrict our search to estimators fz satisfying the same inequality
‖fz‖B(X) ≤ M . Now, in learning theory there are two standard ways to go.
In the first approach, (I), we are looking for an estimator of the form (2.8.1)
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with an extra condition

‖GΛ‖B(X) ≤ M. (2.8.2)

In the second approach, (II), we take an approximant GΛ of the form (2.8.1)
and truncate it, i.e., consider TM (GΛ), where TM is a truncation operator:
TM (u) = u if |u| ≤ M and TM (u) = M signu if |u| ≥ M . Then automati-
cally ‖TM (GΛ)‖B(X) ≤ M .

Let us look in more detail at the hypothesis spaces generated in the above
two cases. In case (I) we use the following compacts in B(X) as a source of
estimators:

Fn(q) :=

{

f : ∃Λ ⊂ [1, Nn], |Λ| = n, f =
∑

l∈Λ

clg
n
l , ‖f‖B(X) ≤ M

}

.

An important feature of Fn(q) is that it is a collection of sparse (at most
n terms) estimators. An important drawback is that it may not be easy to
check if (2.8.2) is satisfied for a particular GΛ of the form (2.8.1).

In case (II) we use the following sets in B(X) as a source of estimators:

F T
n (q) :=

{

f : ∃Λ ⊂ [1, Nn], |Λ| = n, f = TM

(

∑

l∈Λ

clg
n
l

)}

.

An obvious good feature of F T
n (q) is that by definition we have ‖f‖B(X) ≤ M

for any f from F T
n (q). An important drawback is that F T

n (q) has (in general)
a rather complex structure. In particular, applying the truncation operator
TM to GΛ we lose (in general) the sparseness property of GΛ.

Now, when we have specified our hypothesis spaces, we can look for an
existing theory that provides the corresponding error bounds. The gen-
eral theory is well developed in case (I). We will use a variant of such a
general theory developed in Temlyakov (2005c). This theory is based on
the following property of compacts Fn(q), formulated in terms of covering
numbers:

N(Fn(q), ǫ, B(X)) ≤ (1 + 2M/ǫ)nnqn. (2.8.3)

We now formulate the corresponding results from Temlyakov (2005c). For
a compact Θ in a Banach space B we let N(Θ, ǫ, B) denote the covering
number, that is, the minimal number of balls of radius ǫ, with centres in
Θ, needed to cover Θ. Let a and b be two positive numbers. Consider a
collection K(a, b) of compact subsets Kn in B(X) that are contained in the
M -ball of B(X) and satisfy the following covering numbers condition:

N(Kn, ǫ, B(X)) ≤ (a(1 + 1/ǫ))nnbn, n = 1, 2, . . . . (2.8.4)

The following theorem was proved in Temlyakov (2005c). We begin with
the definition of our estimator. As above, let K := K(a, b) be a collection of
compacts Kn in B(X) satisfying (2.8.4).
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We take a parameter A ≥ 1 and consider the following Penalized Least
Squares Estimator (PLSE):

fA
z

:= fA
z

(K) := fz,Kn(z)
,

with

n(z) := arg min
1≤j≤m

(

Ez(fz,Kj ) +
Aj lnm

m

)

.

For a set L of a Banach space B, let

d(Θ, L)B := sup
f∈Θ

inf
g∈L

‖f − g‖B.

Theorem 2.8.1. For K := {Kn}∞n=1 satisfying (2.8.4) and M > 0, there
exists A0 := A0(a, b, M) such that, for any A ≥ A0 and any ρ such that
|y| ≤ M a.s., we have

‖fA
z
− fρ‖2

L2(ρX) ≤ min
1≤j≤m

(

3d(fρ, Kj)
2
L2(ρX) +

4Aj lnm

m

)

,

with probability ≥ 1 − m−c(M)A.

It is clear from (2.8.3) and from the definition of Fn(q) that we can apply
Theorem 2.8.1 to the sequence of compacts {Fn(q)} and obtain the following
error bound with probability ≥ 1 − m−c(M)A:

‖fA
z
− fρ‖2

L2(ρX) ≤ min
1≤j≤m

(

3d(fρ, Fj(q))
2
L2(ρX) +

4Aj lnm

m

)

. (2.8.5)

We note that inequality (2.8.5) is the Lebesgue-type inequality (see Sec-
tion 2.6). Indeed, on the left-hand side of (2.8.5) we have an error of a par-
ticular estimator fA

z
built as the PLSE and on the right-hand side of (2.8.5)

we have d(fρ, Fj(q))L2(ρX): the best error that we can get using estimators

from Fj(q), j = 1, 2, . . . . We recall that by construction fA
z

∈ Fn(z)(q).
Let us now discuss an application of the theory from Temlyakov (2005c)

in case (II). We cannot apply that theory directly to the sequence of sets
{F T

n (q)} because we do not know if these sets satisfy the covering number
condition (2.8.4). However, we can modify the sets F T

n (q) to make them
satisfy condition (2.8.4). Let c ≥ 0 and define

F T
n (q, c) :=

{

f : ∃GΛ :=
∑

l∈Λ

clg
n
l , Λ ⊂ [1, Nn], |Λ| = n,

‖GΛ‖B(X) ≤ C2n
c, f = TM (GΛ)

}

with some fixed C2 ≥ 1. Then, using the inequality

|TM (f1(x)) − TM (f2(x))| ≤ |f1(x) − f2(x)|, for x ∈ X,
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it is easy to get that

N(F T
n (q, c), ǫ, B(X)) ≤ (2C2(1 + 1/ǫ))nn(q+c)n.

Therefore, (2.8.4) is satisfied with a = 2C2 and b = q + c. We note that,
from a practical point of view, an extra restriction ‖GΛ‖B(X) ≤ C2n

c is not
a big constraint.

The above estimators (built as the PLSE) are very good from the theo-
retical point of view. Their error bounds satisfy Lebesgue-type inequalities.
However, they are not good from the point of view of implementation. For
example, there is no simple algorithm to find f

z,Fn(q) because Fn(q) is a

union of
(

Nn

n

)

M -balls of n-dimensional subspaces. Thus, finding an exact
LSE f

z,Fn(q) is practically impossible. We now use a remark from Temlyakov
(2005c) that allows us to build an approximate LSE with good approxima-
tion error. We proceed to the definition of the Penalized Approximate Least
Squares Estimator (PALSE) (see Temlyakov (2005c)). Let δ := {δj,m}m

j=1
be a sequence of non-negative numbers. We define fz,δ,Kj as an estimator
satisfying the relation

Ez(fz,δ,Kj ) ≤ Ez(fz,Kj ) + δj,m. (2.8.6)

In other words, fz,δ,Kj is an approximation to the least squares estimator
fz,Kj .

Next, we take a parameter A ≥ 1 and define the Penalized Approximate
Least Squares Estimator (PALSE)

fA
z,δ := fA

z,δ(K) := fz,δ,Kn(z)
,

with

n(z) := arg min
1≤j≤m

(

Ez(fz,δ,Kj ) +
Aj lnm

m

)

.

The theory developed in Temlyakov (2005c) gives the following error esti-
mate.

Theorem 2.8.2. Under the assumptions of Theorem 2.8.1 we have

‖fA
z,δ − fρ‖2

L2(ρX) ≤ min
1≤j≤m

(

3d(fρ, Kj)
2
L2(ρX) +

4Aj lnm

m
+ 2δj,m

)

,

with probability ≥ 1 − m−c(M)A.

We point out here that the approximate least squares estimator fz,δ,Kj

approximates the least squares estimator fz,Kj in the sense that Ez(fz,δ,Kj )−
Ez(fz,Kj ) is small, and not in the sense that ‖fz,δ,Kj − fz,Kj‖ is small. The-
orem 2.8.2 guarantees a good error bound for any penalized estimator built
from {fz,δ,Kj} satisfying (2.8.6). We will use greedy algorithms in building
an approximate estimator. We now present results from Temlyakov (2005d).
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We will need more specific compacts F (n, q) and will impose some restric-
tions on gn

l . We assume that ‖gn
l ‖B(X) ≤ C1 for all n and l. We consider

the following compacts instead of Fn(q):

F (n, q) :=

{

f : ∃Λ ⊂ [1, Nn], |Λ| = n, f =
∑

l∈Λ

clg
n
l ,

∑

l∈Λ

|cl| ≤ 1

}

.

Then we have ‖f‖B(X) ≤ C1 for any f ∈ F (n, q) and ‖f‖B(X) ≤ M if
M ≥ C1. Let z = (z1, . . . , zm), zi = (xi, yi), be given. Consider the
following system of vectors in R

m:

vj,l := (gj
l (x1), . . . , g

j
l (xm)), l ∈ [1, Nj ].

We equip the R
m with the norm ‖v‖ := (m−1

∑m
i=1 v2

i )
1/2. Then

‖vj,l‖ ≤ ‖gj
l ‖B(X) ≤ C1.

Consider the system G := {vj,l}Nj

l=1 in H = R
m with the norm ‖ · ‖ defined

above. Finding the estimator

f
z,F (j,q) =

∑

l∈Λ

clg
j
l ,

∑

l∈Λ

|cl| ≤ 1, |Λ| = j, Λ ⊂ [1, Nj ],

is equivalent to finding best j-term approximant of y ∈ R
m from the A1(G)

in the space H. We apply the RGA(θ) from Section 2.4 with θ = 2 with
respect to G to y and find, after j steps, an approximant

vj :=
∑

l∈Λ′

alv
j,l,

∑

l∈Λ′

|al| ≤ 1, |Λ′| = j, Λ′ ⊂ [1, Nj ],

such that

‖y − vj‖2 ≤ d(y, A1(G))2 + Cj−1, C = C(M, C1).

We define an estimator

f̂z := f̂
z,F (j,q) :=

∑

l∈Λ′

alg
j
l .

Then f̂z ∈ F (j, q) and

Ez(f̂z,F (j,q)) ≤ Ez(fz,F (j,q)) + Cj−1.

We let δ := {Cj−1}m
j=1, and define for A ≥ 1

fA
z,δ := f̂

z,F (n(z),q),

with

n(z) := arg min
1≤j≤m

(

Ez(f̂z,F (j,q)) +
Aj lnm

m

)

.
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By Theorem 2.8.2 we have for A ≥ A0(M)

‖fA
z,δ − fρ‖2

L2(ρX) ≤ min
1≤j≤m

(

3d(fρ, F (j, q))2 +
4Aj lnm

m
+ 2Cj−1

)

(2.8.7)

with probability ≥ 1 − m−c(M)A.
In particular, (2.8.7) means that the estimator fA

z,δ is an estimator that
provides the error

‖fA
z,δ − fρ‖2

L2(ρX) ≪
(

lnm

m

)
2r

1+2r

for fρ such that d(fρ, F (j, q))L2(ρX) ≪ j−r, r ≤ 1/2. We note that the

estimator fA
z,δ is based on the greedy algorithm and it can easily be imple-

mented.
We now describe an application of greedy algorithm in learning theory

from Barron, Cohen, Dahmen and DeVore (2005). In this application one
can use the Orthogonal Greedy Algorithm or the following variant of the
Relaxed Greedy Algorithm.

Let α1 := 0 and αm := 1 − 2/m, m ≥ 2. We set f0 := f , G0 := 0 and
inductively define two sequences {βm}∞m=1, {ϕm}∞m=1 as follows:

(βm, ϕm) := arg min
β∈R,g∈D

‖f − (αmGm−1 + βg)‖.

Then we set

fm := fm−1 − βmϕm, Gm := Gm−1 + βmϕm.

For systems D(n, q) the following estimator is considered in Barron et al.

(2005). As above, let z = (z1, . . . , zm), zi = (xi, yi), be given. Consider the
following system of vectors in R

m:

vj,l := (gj
l (x1), . . . , g

j
l (xm)), l ∈ [1, Nj ].

We equip the R
m with the norm ‖v‖ := (m−1

∑m
i=1 v2

i )
1/2 and normalize

the above system of vectors. Denote the new system of vectors by Gj . Now
we apply either the OGA or the version of the RGA defined above to the
vector y ∈ R with respect to the system Gj . As in the case discussed above

of the system G, we obtain an estimator f̂j . Next, we look for the penalized

estimator built from the estimators {f̂j} in the following way. Let

n(z) := arg min
1≤j≤m

(

Ez(TM (f̂j)) +
Aj log m

m

)

.

Define

f̂ := TM (f̂n(z)).



344 V. N. Temlyakov

Assuming that the systems D(n, q) are normalized in L2(ρX), Barron et al.

(2005) proved the following error estimate.

Theorem 2.8.3. There exists A0(M) such that for A ≥ A0 we have the
following bound for the expectation of the error:

E(‖fρ − f̂‖2
L2(ρX)) ≤ min

1≤j≤m
(C(A, M, q)j log m/m (2.8.8)

+ inf
h∈spanD(j,q)

(2‖fρ − h‖2
L2(ρX) + 8‖h‖2

A1(D(j,q))/j)).

Let us make a comparison of (2.8.8) with (2.8.7). First of all, (2.8.8) gives
an error bound for the expectation and (2.8.7) gives an error bound with
high probability. In this sense (2.8.7) is better than (2.8.8). However, the
condition ‖gn

l ‖B(X) ≤ C1 imposed on the systems D(n, q) in order to obtain
(2.8.7) is more restrictive than the corresponding assumption for (2.8.8).

2.9. A remark on compressed sensing

Recently, compressed sensing (compressive sampling) has attracted a lot of
attention from both mathematicians and computer scientists. Compressed
sensing refers to a problem of economical recovery of an unknown vector
u ∈ R

m from the information provided by linear measurements 〈u, ϕj〉,
ϕj ∈ R

m, j = 1, . . . , n. The goal is to design an algorithm that finds
(approximates) u from the information y = (〈u, ϕ1〉, . . . , 〈u, ϕn〉) ∈ R

n. The
crucial step here is to build a sensing set of vectors ϕj ∈ R

m, j = 1, . . . , n
that is good for all vectors u ∈ R

m. Clearly, the terms economical and good

should be clarified in a mathematical setting of the problem. A natural
variant of such a setting, which we discuss here, uses the concept of sparsity.
We call a vector u ∈ R

m k-sparse if it has at most k non-zero coordinates.
Now, for a given pair (m, n) we want to understand what is the biggest
sparsity k(m, n) such that there exists a set of vectors ϕj ∈ R

m, j = 1, . . . , n
and economical algorithm A mapping y into R

m in such a way that, for any
u of sparsity k(m, n), one would have an exact recovery A(u) = u. In other
words, we want to describe matrices Φ with rows ϕj ∈ R

m, j = 1, . . . , n,
such that there exists an economical algorithm of solving the following sparse
recovery problem.

The sparse recovery problem can be stated as the problem of finding the
sparsest vector u0 := u0

Φ(y) ∈ R
m:

min ‖v‖0 subject to Φv = y, (P0)

where ‖v‖0 := | supp(v)|. D. Donoho and co-authors (see, for instance,
Chen, Donoho and Saunders (2001), Donoho et al. (2006) and the history
therein) have suggested an economical algorithm (Basis Pursuit) and have
begun a systematic study of the following question. For which measure-
ment matrices Φ should the highly non-convex combinatorial optimization



Greedy approximation 345

problem (P0) be equivalent to its convex relaxation problem

min ‖v‖1 subject to Φv = y, (P1)

where ‖v‖1 denotes the ℓ1-norm of the vector v ∈ R
m? Denote the solution

to (P1) by AΦ(y). It is known that the problem (P1) can be solved by linear
programming techniques. The ℓ1-minimization algorithm AΦ from (P1) is
an economical algorithm that we consider in this section. It is known (see,
for instance, Donoho et al. (2006)) that for M -coherent matrices Φ we have
u0

Φ(Φu) = AΦ(Φu) = u, provided u is k-sparse with k < (1 + 1/M)/2. This
allows us to build rather simple deterministic matrices Φ with k(m, n) ≍
n1/2 and recover AΦ from (P1) with the ℓ1-minimization algorithm.

Recent progress (see surveys by Candès (2006) and DeVore (2006)) in
compressed sensing has resulted in proving the existence of matrices Φ with
k(m, n) ≍ n/ log(m/n), which is substantially larger than n1/2. We proceed
to a detailed discussion of these recent results.

We begin with results from Donoho (2006). Donoho formulated the fol-
lowing three properties of matrices Φ with ℓ2-normalized columns, and
proved the existence of matrices satisfying these conditions. Let T be a
subset of indices from [1, m]. Let ΦT denote a matrix consisting of columns
of Φ with indices from T .

CS1 The minimal singular value of ΦT is ≥ η1 > 0 uniformly in T , satis-
fying |T | ≤ ρn/ log m.

CS2 Let WT denote the range of ΦT . Assume that for any T satisfying
|T | ≤ ρn/ log m, we have

‖w‖1 ≥ η2n
1/2‖w‖2, ∀w ∈ WT , η2 > 0.

CS3 Denote T c := {j}m
j=1 \ T . For any T , |T | ≤ ρn/ log m and for any

w ∈ WT , we have for any v satisfying ΦT cv = w

‖v‖ℓ1(T c) ≥ η3(log(m/n))−1/2‖w‖1, η3 > 0.

It is proved in Donoho (2006) that if Φ satisfies CS1–CS3, then there
exists ρ0 > 0 such that u0

Φ(Φu) = AΦ(Φu) = u provided | suppu| ≤
ρ0n/ log m. Analysis in Donoho (2006) relates the compressed sensing prob-
lem to the problem of estimating the Kolmogorov widths and their dual,
the Gel’fand widths.

We give the corresponding definitions. For a compact F ⊂ R
m, the

Kolmogorov width is given by

dn(F, ℓp) := inf
Ln:dim Ln≤n

sup
f∈F

inf
a∈Ln

‖f − a‖p,

where Ln is a linear subspace of R
m and ‖ · ‖p denotes the ℓp-norm. The
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Gel’fand width is defined by

dn(F, ℓp) := inf
Vn

sup
f∈F∩Vn

‖f‖p,

where the infimum is taken over linear subspaces Vn with dimension ≥ m−n.
It is well known that the Kolmogorov and the Gel’fand widths are related
by the duality formula. For instance, when F = Bm

p is a unit ℓp-ball in R
m

and 1 ≤ q, p ≤ ∞, we have

dn(Bm
p , ℓq) = dn(Bm

q′ , ℓp′), p′ := p/(p − 1). (2.9.1)

In the particular case p = 2, q = ∞ of our interest, (2.9.1) gives

dn(Bm
2 , ℓ∞) = dn(Bm

1 , ℓ2). (2.9.2)

It has been established in approximation theory (see Kashin (1977) and
Garnaev and Gluskin (1984)) that

dn(Bm
2 , ℓ∞) ≤ C((1 + log(m/n))/n)1/2. (2.9.3)

In other words, it was proved (see (2.9.3) and (2.9.2)) that for any pair (m, n)
there exists a subspace Vn, dim Vn ≥ m − n such that, for any x ∈ Vn, we
have

‖x‖2 ≤ C((1 + log(m/n))/n)1/2‖x‖1. (2.9.4)

It was understood in Donoho (2006) that properties of the null space
N (Φ) := {x : Φx = 0} of a measurement matrix Φ play an important role
in the compressed sensing problem. Donoho (2006) introduced the following
two characteristics of Φ formulated in terms of N (Φ):

w(Φ, F ) := sup
x∈F∩N (Φ)

‖x‖2

and

ν(Φ, T ) := sup
x∈N (Φ)

‖xT ‖1/‖x‖1,

where xT is a restriction of x onto T : (xT )j = xj for j ∈ T and (xT )j = 0
otherwise. He proved that if Φ obeys the following two conditions,

ν(Φ, T ) ≤ η1, |T | ≤ ρ1n/ log m, (A1)

w(Φ, Bm
1 ) ≤ η2((log m)/n)1/2, (A2)

then for any u ∈ Bm
1 we have

‖u − AΦ(Φu)‖2 ≤ C((log m)/n)1/2.

We now proceed to the contribution of E. Candès, J. Romberg and T. Tao
published in a series of papers (see Candès and Tao (2005)). They intro-
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duced the following Restricted Isometry Property (RIP) of a sensing ma-
trix Φ: δS < 1 is the S-restricted isometry constant of Φ if it is the smallest
quantity such that

(1 − δS)‖c‖2
2 ≤ ‖ΦT c‖2

2 ≤ (1 + δS)‖c‖2
2

for all subsets T with |T | ≤ S and all coefficient sequences {cj}j∈T . Candès
and Tao (2005) proved that if δ2S + δ3S < 1, then for S-sparse u we have
AΦ(Φu) = u (recovery by ℓ1-minimization is exact). They also proved
existence of sensing matrices Φ obeying the condition δ2S + δ3S < 1 for
large values of sparsity S ≍ n/ log(m/n). For a positive number a denote

σa(v)1 := min
w∈Rm:| supp(w)|≤a

‖v − w‖1.

Candès, Romberg and Tao (2006) proved that if δ3S + 3δ4S < 2, then

‖u − AΦ(Φu)‖2 ≤ CS−1/2σS(u)1. (2.9.5)

We note that properties of the RIP-type matrices have already been em-
ployed in Kashin (1977) (see Kashin and Temlyakov (2007) for further dis-
cussion) for the widths estimation. The inequality (2.9.3) with an extra
factor (1+ log m/n) was established in Kashin (1977). The proof in Kashin
(1977) is based on properties of a random matrix Φ with elements ±1/

√
n.

Further investigation of the compressed sensing problem was conducted
by Cohen, Dahmen and DeVore (2007). They proved that if Φ satisfies the
RIP of order 2k with δ2k < δ < 1/3, then

‖u − AΦ(Φu)‖1 ≤ 2 + 2δ

1 − 3δ
σk(u)1. (2.9.6)

The above inequality is the Lebesgue-type inequality (see Section 2.6) for the
approximation method u → AΦ(Φu). In Cohen et al. (2007) the inequality
(2.9.6) was called instance optimality. In the proof of (2.9.6) the authors
used the following property (null space property) of matrices Φ satisfying
the RIP of order 3k/2: for any x ∈ N (Φ) and any T with |T | ≤ k, we have

‖x‖1 ≤ C‖xT c‖1. (2.9.7)

The null space property (2.9.7) is closely related to the property (A1) from
Donoho (2006). The proof of (2.9.6) from Cohen et al. (2007) gives an
inequality similar to (2.9.6) under the assumption that Φ has the null space
property (2.9.7) with C < 2.

We now discuss results of Kashin and Temlyakov (2007). We say that a
measurement matrix Φ has a Strong Compressed Sensing Property (SCSP)
if, for any u ∈ R

m, we have

‖u − AΦ(Φu)‖2 ≤ Ck−1/2σk(u)1, (2.9.8)
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for k ≍ n/ log(m/n). We define a Weak Compressed Sensing Property
(WCSP) by replacing (2.9.8) by the weaker inequality

‖u − AΦ(Φu)‖2 ≤ Ck−1/2‖u‖1. (2.9.9)

We say that Φ satisfies the Width Property (WP) if (2.9.4) holds for the null
space N (Φ). The main result of the paper Kashin and Temlyakov (2007)
states that the above three properties of Φ are equivalent. We proceed to a
detailed discussion of results from Kashin and Temlyakov (2007).

We mentioned above that it is known that, for any pair (m, n), n < m,
there exists a subspace Γ ⊂ R

m with dim Γ ≥ m − n such that

‖x‖2 ≤ Cn−1/2(ln(em/n))1/2‖x‖1, ∀x ∈ Γ. (2.9.10)

We will discuss some properties of subspaces Γ satisfying (2.9.10) that
are useful in compressed sensing. Let

S := S(m, n) := C−2n(ln(em/n))−1.

For x = (x1, . . . , xm) ∈ R
m, define supp(x) := {j : xj = 0}.

Lemma 2.9.1. Let Γ satisfy (2.9.10) and x ∈ Γ. Then either x = 0 or
| supp(x)| ≥ S(m, n).

Proof. Assume x = 0. Then ‖x‖1 > 0. Denote Λ := supp(x). We have

‖x‖1 =
∑

j∈Λ

|xj | ≤ |Λ|1/2

(

∑

j∈Λ

|xj |2
)1/2

≤ |Λ|1/2‖x‖2. (2.9.11)

Using (2.9.10), we get from (2.9.11)

‖x‖1 ≤ |Λ|1/2S(m, n)−1/2‖x‖1.

Thus

|Λ| ≥ S(m, n).

Lemma 2.9.2. Let Γ satisfy (2.9.10) and let x = 0, x ∈ Γ. Then, for any
Λ such that |Λ| < S(m, n)/4,

∑

j∈Λ

|xj | < ‖x‖1/2.

Proof. As in (2.9.11),
∑

j∈Λ

|xj | ≤ |Λ|1/2S(m, n)−1/2‖x‖1 < ‖x‖1/2.

Lemma 2.9.3. Let Γ satisfy (2.9.10). Suppose u ∈ R
m is sparse with

| supp(u)| < S(m, n)/4. Then, for any v = u + x, x ∈ Γ, x = 0,

‖v‖1 > ‖u‖1.
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Proof. Let Λ := supp(u). Then

‖v‖1 =
∑

j∈[1,m]

|vj | =
∑

j∈Λ

|uj + xj | +
∑

j /∈Λ

|xj |

≥
∑

j∈Λ

|uj | −
∑

j∈Λ

|xj | +
∑

j /∈Λ

|xj | = ‖u‖1 + ‖x‖1 − 2
∑

j∈Λ

|xj |.

By Lemma 2.9.2,

‖x‖1 − 2
∑

j∈Λ

|xj | > 0.

Lemma 2.9.3 guarantees that the following algorithm, known as the Ba-
sis Pursuit (see AΦ defined above), will find a sparse u exactly, provided
| supp(u)| < S(m, n)/4:

uΓ := u + arg min
x∈Γ

‖u + x‖1.

Theorem 2.9.4. Let Γ satisfy (2.9.10). Then, for any u ∈ R
m and u′

such that ‖u′‖1 ≤ ‖u‖1, u − u′ ∈ Γ,

‖u − u′‖1 ≤ 4σS/16(u)1, (2.9.12)

‖u − u′‖2 ≤ (S/16)−1/2σS/16(u)1. (2.9.13)

Proof. It is given that u−u′ ∈ Γ. Thus, (2.9.13) follows from (2.9.12) and
(2.9.10). We now prove (2.9.12). Let Λ, |Λ| = [S/16], be the set of indices
of coordinates of u that are largest in absolute value. Let uΛ denote the
restriction of u onto this set, i.e., (uΛ)j = uj for j ∈ Λ and (uΛ)j = 0 for
j /∈ Λ, and let uΛ := u − uΛ. Then

σS/16(u)1 = σ|Λ|(u)1 = ‖u − uΛ‖1 = ‖uΛ‖1. (2.9.14)

We have

‖u − u′‖1 ≤ ‖(u − u′)Λ‖1 + ‖(u − u′)Λ‖1.

Next,

‖(u − u′)Λ‖1 ≤ ‖uΛ‖1 + ‖(u′)Λ‖1.

Using ‖u′‖1 ≤ ‖u‖1, we obtain

‖(u′)Λ‖1 − ‖uΛ‖1 = ‖u′‖1 − ‖u‖1 − ‖u′
Λ‖1 + ‖uΛ‖1 ≤ ‖(u − u′)Λ‖1.

Therefore,

‖(u′)Λ‖1 ≤ ‖uΛ‖1 + ‖(u − u′)Λ‖1
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and

‖u − u′‖1 ≤ 2‖(u − u′)Λ‖1 + 2‖uΛ‖1. (2.9.15)

Using the fact u − u′ ∈ Γ, we estimate

‖(u − u′)Λ‖1 ≤ |Λ|1/2‖(u − u′)Λ‖2 ≤ |Λ|1/2‖u − u′‖2

≤ |Λ|1/2S−1/2‖u − u′‖1. (2.9.16)

Our assumption on |Λ| guarantees that |Λ|1/2S−1/2 ≤ 1/4. Using this and
substituting (2.9.16) into (2.9.15), we obtain

‖u − u′‖1 ≤ ‖u − u′‖1/2 + 2‖uΛ‖1,

which gives (2.9.12):

‖u − u′‖1 ≤ 4‖uΛ‖1.

Corollary 2.9.5. Let Γ satisfy (2.9.10). Then, for any u ∈ R
m,

‖u − uΓ‖1 ≤ 4σS/16(u)1, (2.9.17)

‖u − uΓ‖2 ≤ (S/16)−1/2σS/16(u)1. (2.9.18)

Proposition 2.9.6. Let Γ be such that (2.9.9) holds with uΓ instead of
AΦ(Φu) and k = n/ ln(em/n). Then Γ satisfies (2.9.10).

Proof. Let u ∈ Γ. Then uΓ = 0, and we get from (2.9.9)

‖u‖2 ≤ C(n/ ln(em/n))−1/2‖u‖1.

Theorem 2.9.7. The following three properties of Φ are equivalent: the
Strong Compressed Sensing Property, the Weak Compressed Sensing Prop-
erty, and the Width Property.

Proof. It is obvious that SCSP ⇒ WCSP. Corollary 2.9.5 with Γ = N (Φ)
implies that WP ⇒ SCSP. Proposition 2.9.6 with Γ = N (Φ) implies that
WCSP ⇒ WP. Thus the three properties are equivalent.

The result (2.9.5) of Candès et al. (2006) states that the RIP with
S ≍ n/ log(m/n) implies the SCSP. Therefore, by Theorem 2.9.7 it implies
the WP.

We note that there are very interesting results on greedy approximation
in compressed sensing. We do not discuss these results here, and refer
the reader to two of them: Tropp and Gilbert (2005) and Needell and
Vershynin (2007).
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CHAPTER THREE

Greedy approximation with respect to dictionaries:

Banach spaces

3.1. Introduction

In this chapter we make a step from Hilbert spaces to more general Banach
spaces. Let X be a Banach space with norm ‖ · ‖. We say that a set
of elements (functions) D from X is a dictionary, respectively, symmetric
dictionary, if each g ∈ D has norm bounded by one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,

and the closure of spanD is X. We denote the closure (in X) of the convex
hull of D by A1(D). We introduce a new norm, associated with a dictionary
D, in the dual space X∗ by the formula

‖F‖D := sup
g∈D

F (g), F ∈ X∗.

In this chapter we will study greedy algorithms with regard to D. For a
non-zero element f ∈ X we let Ff denote a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.
The existence of such a functional is guaranteed by Hahn–Banach theorem.

We begin with a generalization of the Pure Greedy Algorithm. The greedy
step of the PGA can be interpreted in two ways. First, we look at the mth
step for an element ϕm ∈ D and a number λm satisfying

‖fm−1 − λmϕm‖H = inf
g∈D,λ

‖fm−1 − λg‖H . (3.1.1)

Second, we look for an element ϕm ∈ D such that

〈fm−1, ϕm〉 = sup
g∈D

〈fm−1, g〉. (3.1.2)

In a Hilbert space both versions (3.1.1) and (3.1.2) resulted in the same
PGA. In a general Banach space the corresponding versions of (3.1.1) and
(3.1.2) lead to different greedy algorithms. The Banach space version of
(3.1.1) is straightforward: instead of the Hilbert norm ‖ · ‖H in (3.1.1) we
use the Banach norm ‖ · ‖X . This results in the following greedy algorithm
(see Temlyakov (2003a)).

X-Greedy Algorithm (XGA). We define f0 := f , G0 := 0. Then, for
each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D, λm ∈ R are such that (we assume existence)

‖fm−1 − λmϕm‖X = inf
g∈D,λ

‖fm−1 − λg‖X . (3.1.3)
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(2) Define

fm := fm−1 − λmϕm, Gm := Gm−1 + λmϕm.

The second version of the PGA in a Banach space is based on the concept
of a norming (peak) functional. We note that in a Hilbert space a norming
functional Ff acts as follows:

Ff (g) = 〈f/‖f‖, g〉.
Thus, (3.1.2) can be rewritten in terms of the norming functional Ffm−1 as

Ffm−1(ϕm) = sup
g∈D

Ffm−1(g). (3.1.4)

This observation leads to the class of dual greedy algorithms. We define
the Weak Dual Greedy Algorithm with weakness τ (WDGA(τ)) (see Dil-
worth, Kutzarova and Temlyakov (2002) and Temlyakov (2003a)) that is a
generalization of the Weak Greedy Algorithm.

Weak Dual Greedy Algorithm (WDGA(τ )). Let τ := {tm}∞m=1, tm ∈
[0, 1], be a weakness sequence. We define f0 := f . Then, for each m ≥ 1 we
have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ tm‖Ffm−1‖D. (3.1.5)

(2) Define am as

‖fm−1 − amϕm‖ = min
a∈R

‖fm−1 − aϕm‖.

(3) Let

fm := fm−1 − amϕm.

Let us make a remark that justifies the idea of the dual greedy algorithms
in terms of real analysis. We consider here approximation in uniformly
smooth Banach spaces. For a Banach space X we define the modulus of
smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(

1

2
(‖x + uy‖ + ‖x − uy‖) − 1

)

.

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

It is easy to see that for any Banach space X its modulus of smoothness
ρ(u) is an even convex function satisfying the inequalities

max(0, u − 1) ≤ ρ(u) ≤ u, u ∈ (0,∞).
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We note that from the definition of modulus of smoothness we get the
following inequality.

Lemma 3.1.1. Let x = 0. Then

0 ≤ ‖x + uy‖ − ‖x‖ − uFx(y) ≤ 2‖x‖ρ(u‖y‖/‖x‖). (3.1.6)

Proof. We have

‖x + uy‖ ≥ Fx(x + uy) = ‖x‖ + uFx(y).

This proves the first inequality. Next, from the definition of modulus of
smoothness it follows that

‖x + uy‖ + ‖x − uy‖ ≤ 2‖x‖(1 + ρ(u‖y‖/‖x‖)). (3.1.7)

Also,

‖x − uy‖ ≥ Fx(x − uy) = ‖x‖ − uFx(y). (3.1.8)

Combining (3.1.7) and (3.1.8), we obtain

‖x + uy‖ ≤ ‖x‖ + uFx(y) + 2‖x‖ρ(u‖y‖/‖x‖).
This proves the second inequality.

Proposition 3.1.2. Let X be a uniformly smooth Banach space. Then,
for any x = 0 and y we have

Fx(y) =

(

d

du
‖x + uy‖

)

(0) = lim
u→0

(‖x + uy‖ − ‖x‖)/u. (3.1.9)

Proof. The equality (3.1.9) follows from (3.1.6) and the property that, for
a uniformly smooth Banach space, limu→0 ρ(u)/u = 0.

Proposition 3.1.2 shows that in the WDGA we are looking for an element
ϕm ∈ D that provides a big derivative of the quantity ‖fm−1 + ug‖. Thus,
we have two classes of greedy algorithms in Banach spaces. The first one
is based on a greedy step of the form (3.1.3). We call this class the class
of X-greedy algorithms. The second one is based on a greedy step of the
form (3.1.5). We call this class the class of dual greedy algorithms. A very
important feature of the dual greedy algorithms is that they can be modified
into a weak form. The term ‘weak’ in the definition of the WDGA means
that, at the greedy step (3.1.5), we do not aim for the optimal element of
the dictionary which realizes the corresponding supremum but are satisfied
with a weaker property than being optimal. The obvious reason for this
is that we do not know, in general, that the optimal one exists. Another,
practical reason is that the weaker the assumption, the easier it is satisfied
and, therefore, it is easier to realize in practice.

The greedy algorithms defined above (XGA, WDGA) are the generaliza-
tions of the PGA and the WGA, studied in Chapter 2, to the case of Banach



354 V. N. Temlyakov

spaces. The results of Chapter 2 show that the PGA is not the most efficient
greedy algorithm for approximation of elements of A1(D). It was mentioned
in Chapter 2 (see Livshitz and Temlyakov (2003) for the proof) that there
exist a dictionary D, a positive constant C, and an element f ∈ A1(D) such
that, for the PGA,

‖fm‖ ≥ Cm−0.27. (3.1.10)

We note that even before the lower estimate (3.1.10) was proved, researchers
began looking for other greedy algorithms that provide a good rate of ap-
proximation of functions from A1(D). Two different ideas have been used
at this step. The first idea was that of relaxation: see Jones (1992), Barron
(1993), DeVore and Temlyakov (1996) and Temlyakov (2000b). The corre-
sponding algorithms (for example, the WRGA, studied in Chapter 2) were
designed for approximation of functions from A1(D). These algorithms do
not provide an expansion into a series but they have other good features.
It was established (see Theorem 2.3.8) for the WRGA with τ = {1} in a
Hilbert space that, for f ∈ A1(D),

‖fm‖ ≤ Cm−1/2.

Also, for the WRGA we always have Gm ∈ A1(D). The latter property,
clearly, limits the applicability of the WRGA to the A1(D).

The second idea was the idea of building the best approximant from the
span(ϕ1, . . . , ϕm) instead of the use of only one element ϕm for an update
of the approximant. This idea was realized in the Weak Orthogonal Greedy
Algorithm (see Chapter 2) in the case of a Hilbert space and in the Weak
Chebyshev Greedy Algorithm (WCGA) (see Temlyakov (2001b)) in the case
of a Banach space.

The realization of both ideas resulted in the construction of algorithms
(the WRGA and WCGA) that are good for approximation of functions
from A1(D). We present results on the WCGA in Section 3.2 and results
on the WRGA in Section 3.3. The WCGA has the following advantage
over the WRGA. It will be proved in Section 3.2 that the WCGA (under
some assumptions on the weakness sequence τ) converges for each f ∈ X
in any uniformly smooth Banach space. The WRGA is simpler than the
WCGA in the sense of computational complexity. However, the WRGA
has limited applicability. It converges only for elements of the closure of
the convex hull of a dictionary. In Sections 3.4 and 3.5 we study algorithms
that combine good features of both algorithms the WRGA and the WCGA.
In the construction of such algorithms we use different forms of relaxation.

The Weak Greedy Algorithm with Free Relaxation (WGAFR) (Tem-
lyakov 2006c), studied in Section 3.4, is the most powerful of the versions
considered here. We prove convergence of the WGAFR in Theorem 3.4.3.
This theorem is the same as the corresponding convergence result for the
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WCGA (see Theorem 3.2.4). The results on the rate of convergence for
the WGAFR and the WCGA are also the same (see Theorem 3.4.4 and
Theorem 3.2.12). Thus, the WGAFR performs in the same way as the
WCGA from the point of view of convergence and rate of convergence, and
outperforms the WCGA in terms of computational complexity.

In the WGAFR we are optimizing over two parameters w and λ at each
step of the algorithm. In other words we are looking for the best approxi-
mation from a two-dimensional linear subspace at each step. In the other
version of the weak relaxed greedy algorithms (see the GAWR), considered
in Section 3.5, we approximate from a one-dimensional linear subspace at
each step of the algorithm. This makes computational complexity of these
algorithms very close to that of the PGA. The analysis of the GAWR ver-
sion turns out to be more complicated than the analysis of the WGAFR.
Also, the results obtained for the GAWR are not as general as in the case
of the WGAFR. For instance, we present results on the GAWR only in the
case τ = {t}, when the weakness parameter t is the same for all steps.

The XGA and WDGA have a good feature that distinguishes them from
all relaxed greedy algorithms, and also from the WCGA. For an element
f ∈ X they provide an expansion into a series,

f ∼
∞

∑

j=1

cj(f)gj(f), gj(f) ∈ D, cj(f) > 0, j = 1, 2, . . . , (3.1.11)

such that

Gm =
m

∑

j=1

cj(f)gj(f), fm = f − Gm.

In Section 3.7 we discuss other greedy algorithms that provide the expansion
(3.1.11).

All the algorithms studied in Sections 3.2–3.7 belong to the class of dual
greedy algorithms. Results obtained in Sections 3.2–3.7 confirm that dual
greedy algorithms provide powerful methods of nonlinear approximation.
In Section 3.8 we present some results on the X-greedy algorithms. These
results are similar to those for the dual greedy algorithms.

The algorithms studied in Sections 3.2–3.8 are very general approximation
methods that work well in an arbitrary uniformly smooth Banach space X
for any dictionary D. This motivates an attempt, made in Section 3.9, to
modify these theoretical approximation methods in a direction of practical
applicability. In Section 3.9 we illustrate this idea by modifying the WCGA.
We note that Section 3.6 is also devoted to modification of greedy algorithms
in order to make them more practically feasible. The main idea of Section 3.6
is to replace the most difficult (expensive) step of an algorithm, namely the
greedy step, by a thresholding step.
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In Section 3.10 we give an example of how the greedy algorithms can be
used in constructing deterministic cubature formulas with error estimates
similar to those for the Monte Carlo Method.

As a typical example of a uniformly smooth Banach space we will use a
space Lp, 1 < p < ∞. It is well known (see, for instance, Donahue et al.

(1997, Lemma B.1)) that in the case X = Lp, 1 ≤ p < ∞ we have

ρ(u) ≤ up/p if 1 ≤ p ≤ 2 and ρ(u) ≤ (p − 1)u2/2 if 2 ≤ p < ∞.
(3.1.12)

It is also known (see Lindenstrauss and Tzafriri (1977, p. 63)) that, for any
X with dimX = ∞, we have

ρ(u) ≥ (1 + u2)1/2 − 1,

and for every X, dimX ≥ 2,

ρ(u) ≥ Cu2, C > 0.

This limits the power-type modulus of smoothness of non-trivial Banach
spaces to the case 1 ≤ q ≤ 2.

3.2. The Weak Chebyshev Greedy Algorithm

Let τ := {tk}∞k=1 be a given weakness sequence of non-negative numbers
tk ≤ 1, k = 1, . . . . We define first the Weak Chebyshev Greedy Algorithm
(WCGA) (see Temlyakov (2001b)) that is a generalization for Banach spaces
of the Weak Orthogonal Greedy Algorithm.

Weak Chebyshev Greedy Algorithm (WCGA). We define f c
0 :=

f c,τ
0 := f . Then, for each m ≥ 1 we have the following inductive defini-

tion.

(1) ϕc
m := ϕc,τ

m ∈ D is any element satisfying

Ffc
m−1

(ϕc
m) ≥ tm‖Ffc

m−1
‖D.

(2) Define

Φm := Φτ
m := span{ϕc

j}m
j=1,

and define Gc
m := Gc,τ

m to be the best approximant to f from Φm.

(3) Let

f c
m := f c,τ

m := f − Gc
m.

Remark 3.2.1. It follows from the definition of the WCGA that the se-
quence {‖f c

m‖} is a non-increasing sequence.

We proceed to a theorem on convergence of the WCGA. In the formulation
of this theorem we need a special sequence which is defined for a given
modulus of smoothness ρ(u) and a given τ = {tk}∞k=1.



Greedy approximation 357

Definition 3.2.2. Let ρ(u) be an even convex function on (−∞,∞) with
the property: ρ(2) ≥ 1 and

lim
u→0

ρ(u)/u = 0.

For any τ = {tk}∞k=1, 0 < tk ≤ 1, and 0 < θ ≤ 1/2 we define ξm := ξm(ρ, τ, θ)
as a number u satisfying the equation

ρ(u) = θtmu. (3.2.1)

Remark 3.2.3. Assumptions on ρ(u) imply that the function

s(u) := ρ(u)/u, u = 0, s(0) = 0,

is a continuous increasing function on [0,∞) with s(2) ≥ 1/2. Thus (3.2.1)
has a unique solution ξm = s−1(θtm) such that 0 < ξm ≤ 2.

The following theorem from Temlyakov (2001b) gives a sufficient condition
for convergence of the WCGA.

Theorem 3.2.4. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the
condition: for any θ > 0 we have

∞
∑

m=1

tmξm(ρ, τ, θ) = ∞.

Then, for any f ∈ X we have

lim
m→∞

‖f c,τ
m ‖ = 0.

Corollary 3.2.5. Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2, that is, ρ(u) ≤ γuq. Assume that

∞
∑

m=1

tpm = ∞, p =
q

q − 1
. (3.2.2)

Then the WCGA converges for any f ∈ X.

Proof. Denote ρq(u) := γuq. Then

ρ(u)/u ≤ ρq(u)/u,

and therefore for any θ > 0 we have

ξm(ρ, τ, θ) ≥ ξm(ρq, τ, θ).

For ρq we get from the definition of ξm that

ξm(ρq, τ, θ) = (θtm/γ)
1

q−1 .
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Thus (3.2.2) implies that

∞
∑

m=1

tmξm(ρ, τ, θ) ≥
∞

∑

m=1

tmξm(ρq, τ, θ) ≍
∞

∑

m=1

tpm = ∞.

It remains to apply Theorem 3.2.4.

The following theorem from Temlyakov (2001b) gives the rate of conver-
gence of the WCGA for f in A1(D).

Theorem 3.2.6. Let X be a uniformly smooth Banach space with modu-
lus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1,
tk ≤ 1, k = 1, 2, . . . , we have for any f ∈ A1(D) that

‖f c,τ
m ‖ ≤ C(q, γ)

(

1 +

m
∑

k=1

tpk

)−1/p

, p :=
q

q − 1
,

with a constant C(q, γ) which may depend only on q and γ.

We will use the following two simple and well-known lemmas in the proof
of the above two theorems.

Lemma 3.2.7. Let X be a uniformly smooth Banach space and let L be
a finite-dimensional subspace of X. For any f ∈ X \ L, let fL denote the
best approximant of f from L. Then we have

Ff−fL
(φ) = 0

for any φ ∈ L.

Proof. Let us assume the contrary: there is a φ ∈ L such that ‖φ‖ = 1 and

Ff−fL
(φ) = β > 0.

For any λ we have from the definition of ρ(u) that

‖f − fL − λφ‖ + ‖f − fL + λφ‖ ≤ 2‖f − fL‖
(

1 + ρ

(

λ

‖f − fL‖

))

. (3.2.3)

Next

‖f − fL + λφ‖ ≥ Ff−fL
(f − fL + λφ) = ‖f − fL‖ + λβ. (3.2.4)

Combining (3.2.3) and (3.2.4) we get

‖f − fL − λφ‖ ≤ ‖f − fL‖
(

1 − λβ

‖f − fL‖
+ 2ρ

(

λ

‖f − fL‖

))

. (3.2.5)

Taking into account that ρ(u) = o(u), we find λ′ > 0 such that
(

1 − λ′β

‖f − fL‖
+ 2ρ

(

λ′

‖f − fL‖

))

< 1.
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Then (3.2.5) gives

‖f − fL − λ′φ‖ < ‖f − fL‖,
which contradicts the assumption that fL ∈ L is the best approximant of f .

Lemma 3.2.8. For any bounded linear functional F and any dictionary
D, we have

‖F‖D := sup
g∈D

F (g) = sup
f∈A1(D)

F (f).

Proof. The inequality

sup
g∈D

F (g) ≤ sup
f∈A1(D)

F (f)

is obvious. We prove the opposite inequality. Take any f ∈ A1(D). Then,
for any ǫ > 0 there exist gǫ

1, . . . , g
ǫ
N ∈ D and numbers aǫ

1, . . . , a
ǫ
N such that

aǫ
i > 0, aǫ

1 + · · · + aǫ
N ≤ 1 and

∥

∥

∥

∥

f −
N

∑

i=1

aǫ
ig

ǫ
i

∥

∥

∥

∥

≤ ǫ.

Thus

F (f) ≤ ‖F‖ǫ + F

( N
∑

i=1

aǫ
ig

ǫ
i

)

≤ ǫ‖F‖ + sup
g∈D

F (g),

which proves Lemma 3.2.8.

We will also need one more lemma from Temlyakov (2001b).

Lemma 3.2.9. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u). Take a number ǫ ≥ 0 and two elements f , f ǫ from X
such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) > 0. Then we have

‖f c,τ
m ‖ ≤ ‖f c,τ

m−1‖ inf
λ≥0

(

1 − λtmA(ǫ)−1

(

1 − ǫ

‖f c,τ
m−1‖

)

+ 2ρ

(

λ

‖f c,τ
m−1‖

))

,

for m = 1, 2, . . . .

Proof. We have for any λ

‖f c
m−1 − λϕc

m‖ + ‖f c
m−1 + λϕc

m‖ ≤ 2‖f c
m−1‖

(

1 + ρ

(

λ

‖f c
m−1‖

))

, (3.2.6)
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and by (1) from the definition of the WCGA and Lemma 3.2.8 we get

Ffc
m−1

(ϕc
m) ≥ tm sup

g∈D
Ffc

m−1
(g)

= tm sup
φ∈A1(D)

Ffc
m−1

(φ) ≥ tmA(ǫ)−1Ffc
m−1

(f ǫ).

By Lemma 3.2.7 we obtain

Ffc
m−1

(f ǫ) = Ffc
m−1

(f + f ǫ − f) ≥ Ffc
m−1

(f) − ǫ

= Ffc
m−1

(f c
m−1) − ǫ = ‖f c

m−1‖ − ǫ.

Thus, as in (3.2.5) we get from (3.2.6)

‖f c
m‖ ≤ inf

λ≥0
‖f c

m−1 − λϕc
m‖ (3.2.7)

≤ ‖f c
m−1‖ inf

λ≥0

(

1 − λtmA(ǫ)−1

(

1 − ǫ

‖f c
m−1‖

)

+ 2ρ

(

λ

‖f c
m−1‖

))

,

which proves the lemma.

Proof of Theorem 3.2.4. The definition of the WCGA implies that {‖f c
m‖}

is a non-increasing sequence. Therefore we have

lim
m→∞

‖f c
m‖ = α.

We prove that α = 0 by contradiction. Assume to the contrary that α > 0.
Then, for any m we have

‖f c
m‖ ≥ α.

We set ǫ = α/2 and find f ǫ such that

‖f − f ǫ‖ ≤ ǫ and f ǫ/A(ǫ) ∈ A1(D),

with some A(ǫ). Then, by Lemma 3.2.9 we get

‖f c
m‖ ≤ ‖f c

m−1‖ inf
λ

(1 − λtmA(ǫ)−1/2 + 2ρ(λ/α)).

Let us specify θ := α
8A(ǫ) and take λ = αξm(ρ, τ, θ). Then we obtain

‖f c
m‖ ≤ ‖f c

m−1‖(1 − 2θtmξm).

The assumption
∞

∑

m=1

tmξm = ∞

implies that

‖f c
m‖ → 0 as m → ∞.

We have a contradiction, which proves the theorem.
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Proof of Theorem 3.2.6. By Lemma 3.2.9 with ǫ = 0 and A(ǫ) = 1, we
have for f ∈ A1(D) that

‖f c
m‖ ≤ ‖f c

m−1‖ inf
λ≥0

(

1 − λtm + 2γ

(

λ

‖f c
m−1‖

)q)

. (3.2.8)

Choose λ from the equation

1

2
λtm = 2γ

(

λ

‖f c
m−1‖

)q

,

which implies that

λ = ‖f c
m−1‖

q
q−1 (4γ)

− 1
q−1 t

1
q−1
m .

Let

Aq := 2(4γ)
1

q−1 .

Using the notation p := q
q−1 , we get from (3.2.8)

‖f c
m‖ ≤ ‖f c

m−1‖
(

1 − 1

2
λtm

)

= ‖f c
m−1‖(1 − tpm‖f c

m−1‖p/Aq).

Raising both sides of this inequality to the power p and taking into account
the inequality xr ≤ x for r ≥ 1, 0 ≤ x ≤ 1, we obtain

‖f c
m‖p ≤ ‖f c

m−1‖p(1 − tpm‖f c
m−1‖p/Aq).

By an analogue of Lemma 2.3.3 (see Temlyakov (2000b, Lemma 3.1)), using
the estimate ‖f‖p ≤ 1 < Aq we get

‖f c
m‖p ≤ Aq

(

1 +
m

∑

n=1

tpn

)−1

which implies

‖f c
m‖ ≤ C(q, γ)

(

1 +
m

∑

n=1

tpn

)−1/p

.

Theorem 3.2.6 is now proved.

Remark 3.2.10. Theorem 3.2.6 also holds for a slightly modified version
of the WCGA, the WCGA(1), for which at step (1) we require

F
f

c(1)
m−1

(ϕc(1)
m ) ≥ tm‖f c(1)

m−1‖. (3.2.9)
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This statement follows from the fact that, in the proof of Theorem 3.2.6,
the relation

Ffc
m−1

(ϕc
m) ≥ tm sup

g∈D
Ffc

m−1
(g)

was used only to get (3.2.9).

Proposition 3.2.11. Condition (3.2.2) in Corollary 3.2.5 is sharp.

Proof. Let 1 < q ≤ 2. Consider X = ℓq. It is known (Lindenstrauss and
Tzafriri 1977, p. 67) that ℓq, 1 < q ≤ 2, is a uniformly smooth Banach space
with modulus of smoothness ρ(u) of power type q. Denote p := q

q−1 and

take any {tk}∞k=1, 0 < tk ≤ 1, such that

∞
∑

k=1

tpk < ∞. (3.2.10)

Choose D as a standard basis {ej}∞j=1, ej := (0, . . . , 0, 1, 0, . . .), for ℓq. Con-
sider the following realization of the WCGA for

f :=
(

1, t
1

q−1

1 , t
1

q−1

2 , . . .
)

.

First of all, (3.2.10) guarantees that f ∈ ℓq. Next, it is well known that Ff

can be identified as

Ff = (1, t1, t2, . . .)/

(

1 +
∞

∑

k=1

tpk

)1/p

∈ ℓp.

At the first step of the WCGA we pick ϕ1 = e2 and get

f c
1 =

(

1, 0, t
1

q−1

2 , . . .
)

.

We continue with f replaced by f1 and so on. After m steps we get

f c
m =

(

1, 0, . . . , 0, t
1

q−1

m+1, . . .
)

.

It is clear that for all m we have ‖f c
m‖ℓq ≥ 1.

The following variant of Theorem 3.2.6 (see Temlyakov (2006c)) follows
from Lemma 3.2.9.

Theorem 3.2.12. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ǫ ≥ 0 and two
elements f , f ǫ from X such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),
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with some number A(ǫ) > 0. Then we have (p := q/(q − 1))

‖f c,τ
m ‖ ≤ max

(

2ǫ, C(q, γ)(A(ǫ) + ǫ)

(

1 +
m

∑

k=1

tpk

)−1/p)

. (3.2.11)

3.3. Relaxation; co-convex approximation

In this section we study a generalization for Banach spaces of relaxed greedy
algorithms considered in Chapter 2. We present here results from Temlyakov
(2001b). Let τ := {tk}∞k=1 be a given weakness sequence of numbers tk ∈
[0, 1], k = 1, . . . .

Weak Relaxed Greedy Algorithm (WRGA). We define f r
0 := f r,τ

0 :=
f and Gr

0 := Gr,τ
0 := 0. Then, for each m ≥ 1 we have the following

inductive definition.

(1) ϕr
m := ϕr,τ

m ∈ D is any element satisfying

Ffr
m−1

(ϕr
m − Gr

m−1) ≥ tm sup
g∈D

Ffr
m−1

(g − Gr
m−1).

(2) Find 0 ≤ λm ≤ 1 such that

‖f − ((1 − λm)Gr
m−1 + λmϕr

m)‖ = inf
0≤λ≤1

‖f − ((1 − λ)Gr
m−1 + λϕr

m)‖

and define

Gr
m := Gr,τ

m := (1 − λm)Gr
m−1 + λmϕr

m.

(3) Let

f r
m := f r,τ

m := f − Gr
m.

Remark 3.3.1. It follows from the definition of the WRGA that the se-
quence {‖f r

m‖} is a non-increasing sequence.

We call the WRGA relaxed because at the mth step of the algorithm we
use a linear combination (convex combination) of the previous approximant
Gr

m−1 and a new element ϕr
m. The relaxation parameter λm in the WRGA

is chosen at the mth step depending on f . We prove here the analogues of
Theorems 3.2.4 and 3.2.6 for the Weak Relaxed Greedy Algorithm.

Theorem 3.3.2. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the
condition: for any θ > 0 we have

∞
∑

m=1

tmξm(ρ, τ, θ) = ∞.

Then, for any f ∈ A1(D) we have

lim
m→∞

‖f r,τ
m ‖ = 0.
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Theorem 3.3.3. Let X be a uniformly smooth Banach space with modu-
lus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then, for a sequence τ := {tk}∞k=1,
tk ≤ 1, k = 1, 2, . . . , we have for any f ∈ A1(D) that

‖f r,τ
m ‖ ≤ C1(q, γ)

(

1 +

m
∑

k=1

tpk

)−1/p

, p :=
q

q − 1
,

with a constant C1(q, γ) which may depend only on q and γ.

Proof of Theorems 3.3.2 and 3.3.3. This proof is similar to the proof of The-
orems 3.2.4 and 3.2.6. Instead of Lemma 3.2.9 we use the following lemma.

Lemma 3.3.4. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u). Then, for any f ∈ A1(D) we have

‖f r,τ
m ‖ ≤ ‖f r,τ

m−1‖ inf
0≤λ≤1

(

1 − λtm + 2ρ

(

2λ

‖f r,τ
m−1‖

))

, m = 1, 2, . . . .

Proof. We have

f r
m := f − ((1 − λm)Gr

m−1 + λmϕr
m) = f r

m−1 − λm(ϕr
m − Gr

m−1)

and

‖f r
m‖ = inf

0≤λ≤1
‖f r

m−1 − λ(ϕr
m − Gr

m−1)‖.

As for (3.2.6), we have for any λ

‖f r
m−1−λ(ϕr

m − Gr
m−1)‖ + ‖f r

m−1 + λ(ϕr
m − Gr

m−1)‖

≤ 2‖f r
m−1‖

(

1 + ρ

(

λ‖ϕr
m − Gr

m−1‖
‖f r

m−1‖

))

. (3.3.1)

Next we get for λ ≥ 0

‖f r
m−1 + λ(ϕr

m − Gr
m−1)‖

≥ Ffr
m−1

(f r
m−1 + λ(ϕr

m − Gr
m−1))

= ‖f r
m−1‖ + λFfr

m−1
(ϕr

m − Gr
m−1) ≥ ‖f r

m−1‖ + λtm sup
g∈D

Ffr
m−1

(g − Gr
m−1)

= ‖f r
m−1‖ + λtm sup

φ∈A1(D
Ffr

m−1
(φ − Gr

m−1) ≥ ‖f r
m−1‖ + λtm‖f r

m−1‖,

applying Lemma 3.2.8 for the last inequality. Using the trivial estimate
‖ϕr

m − Gr
m−1‖ ≤ 2, we obtain

‖f r
m−1 − λ(ϕr

m − Gr
m−1)‖ ≤ ‖f r

m−1‖
(

1 − λtm + 2ρ

(

2λ

‖f r
m−1‖

))

, (3.3.2)

from (3.3.1), which proves Lemma 3.3.4.
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The remaining part of the proof uses inequality (3.3.2) in the same way
relation (3.2.7) was used in the proof of Theorems 3.2.4 and 3.2.6. The only
additional difficulty here is that we are optimizing over 0 ≤ λ ≤ 1. However,
it is easy to check that the corresponding λ chosen in a similar way always
satisfies the restriction 0 ≤ λ ≤ 1. In the proof of Theorem 3.3.2 we choose
θ = α/8 and λ = αξm(ρ, τ, θ)/2, and in the proof of Theorem 3.3.3 we
choose λ from the equation

1

2
λtm = 2γ(2λ)q‖f r

m−1‖−q.

Remark 3.3.5. Theorems 3.3.2 and 3.3.3 hold for a slightly modified ver-
sion of the WRGA, the WRGA(1), for which at step (1) we require

F
f

r(1)
m−1

(ϕr(1)
m − G

r(1)
m−1) ≥ tm‖f r(1)

m−1‖. (3.3.3)

This follows from the observation that in the proof of Lemma 3.3.4 we
used the inequality from step (1) of the WRGA only to derive (3.3.3). It is
clear from Lemma 3.2.8 that in the case of approximation of f ∈ A1(D), the
requirement (3.3.3) is weaker and easier to check than step (1) of the WRGA.

3.4. Free relaxation

Both of the above algorithms, the WCGA and the WRGA, use the func-
tional Ffm−1 in a search for the mth element ϕm from the dictionary to be
used in approximation. The construction of the approximant in the WRGA
is different from the construction in the WCGA. In the WCGA we build the
approximant Gc

m so as to maximally use the approximation power of the
elements ϕ1, . . . , ϕm. The WRGA by its definition is designed for approxi-
mation of functions from A1(D). In building the approximant in the WRGA
we keep the property Gr

m ∈ A1(D). As we mentioned in Section 3.3 the re-
laxation parameter λm in the WRGA is chosen at the mth step depending
on f . The following modification of the above idea of relaxation in greedy
approximation will be studied in this section (see Temlyakov (2006c)).

Weak Greedy Algorithm with Free Relaxation (WGAFR). Let τ :=
{tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f and
G0 := 0. Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ tm‖Ffm−1‖D.

(2) Find wm and λm such that

‖f − ((1 − wm)Gm−1 + λmϕm)‖ = inf
λ,w

‖f − ((1 − w)Gm−1 + λϕm)‖
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and define

Gm := (1 − wm)Gm−1 + λmϕm.

(3) Let

fm := f − Gm.

We begin with the following analogue of Lemma 3.2.9.

Lemma 3.4.1. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u). Take a number ǫ ≥ 0 and two elements f , f ǫ from X
such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) ≥ ǫ. Then we have for the WGAFR

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(

1 − λtmA(ǫ)−1

(

1 − ǫ

‖fm−1‖

)

+ 2ρ

(

5λ

‖fm−1‖

))

,

for m = 1, 2, . . . .

Proof. By the definition of fm,

‖fm‖ ≤ inf
λ≥0,w

‖fm−1 + wGm−1 − λϕm‖.

As in the arguments in the proof of Lemma 3.2.9, we use the inequality

‖fm−1 + wGm−1 − λϕm‖ + ‖fm−1 − wGm−1 + λϕm‖ (3.4.1)

≤ 2‖fm−1‖(1 + ρ(‖wGm−1 − λϕm‖/‖fm−1‖)),
and estimate for λ ≥ 0

‖fm−1 − wGm−1 + λϕm‖ ≥ Ffm−1(fm−1 − wGm−1 + λϕm)

≥ ‖fm−1‖ − Ffm−1(wGm−1) + λtm sup
g∈D

Ffm−1(g).

By Lemma 3.2.8, we continue:

= ‖fm−1‖ − Ffm−1(wGm−1) + λtm sup
φ∈A1(D)

Ffm−1(φ)

≥ ‖fm−1‖ − Ffm−1(wGm−1) + λtmA(ǫ)−1Ffm−1(f
ǫ)

≥ ‖fm−1‖ − Ffm−1(wGm−1) + λtmA(ǫ)−1(Ffm−1(f) − ǫ).

We set w∗ := λtmA(ǫ)−1 and obtain

‖fm−1 − w∗Gm−1 + λϕm‖ ≥ ‖fm−1‖ + λtmA(ǫ)−1(‖fm−1‖ − ǫ). (3.4.2)

Combining (3.4.1) and (3.4.2) we get

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(1 − λtmA(ǫ)−1(1 − ǫ/‖fm−1‖)

+ 2ρ(‖w∗Gm−1 − λϕm‖/‖fm−1‖)).
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We now estimate

‖w∗Gm−1 − λϕm‖ ≤ w∗‖Gm−1‖ + λ.

Next,

‖Gm−1‖ = ‖f − fm−1‖ ≤ 2‖f‖ ≤ 2(‖f ǫ‖ + ǫ) ≤ 2(A(ǫ) + ǫ).

Thus, under assumption A(ǫ) ≥ ǫ we get

w∗‖Gm−1‖ ≤ 2λtm(A(ǫ) + ǫ)/A(ǫ) ≤ 4λ.

Finally,

‖w∗Gm−1 − λϕm‖ ≤ 5λ.

This completes the proof of Lemma 3.4.1.

Remark 3.4.2. It follows from the definition of the WGAFR that the
sequence {‖fm‖} is a non-increasing sequence.

We now prove a convergence theorem for an arbitrary uniformly smooth
Banach space. Modulus of smoothness ρ(u) of a uniformly smooth Banach
space is an even convex function such that ρ(0) = 0 and limu→0 ρ(u)/u =
0. The function s(u) := ρ(u)/u, s(0) := 0, associated with ρ(u), is a
continuous increasing function on [0,∞). Therefore, the inverse function
s−1(·) is well defined.

Theorem 3.4.3. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u). Assume that a sequence τ := {tk}∞k=1 satisfies the
following condition. For any θ > 0 we have

∞
∑

m=1

tms−1(θtm) = ∞. (3.4.3)

Then, for any f ∈ X we have for the WGAFR

lim
m→∞

‖fm‖ = 0.

Proof. By Remark 3.4.2, {‖fm‖} is a non-increasing sequence. Therefore
we have

lim
m→∞

‖fm‖ = β.

We prove that β = 0 by contradiction. Assume the contrary, that β > 0.
Then, for any m we have

‖fm‖ ≥ β.

We set ǫ = β/2 and find f ǫ such that

‖f − f ǫ‖ ≤ ǫ and f ǫ/A(ǫ) ∈ A1(D),
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with some A(ǫ) ≥ ǫ. Then, by Lemma 3.4.1 we get

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(1 − λtmA(ǫ)−1/2 + 2ρ(5λ/β)).

Let us specify θ := β/(40A(ǫ)) and take λ = βs−1(θtm)/5. Then we obtain

‖fm‖ ≤ ‖fm−1‖(1 − 2θtms−1(θtm)).

The assumption
∞

∑

m=1

tms−1(θtm) = ∞

implies that

‖fm‖ → 0 as m → ∞.

We have a contradiction, which proves the theorem.

Theorem 3.4.4. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ǫ ≥ 0 and two
elements f , f ǫ from X such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) > 0. Then we have for the WGAFR

‖fm‖ ≤ max

(

2ǫ, C(q, γ)(A(ǫ) + ǫ)

(

1 +
m

∑

k=1

tpk

)−1/p)

, p := q/(q − 1).

Proof. It is clear that it suffices to consider the case A(ǫ) ≥ ǫ. Other-
wise, ‖fm‖ ≤ ‖f‖ ≤ ‖f ǫ‖ + ǫ ≤ 2ǫ. Also, assume ‖fm‖ > 2ǫ (otherwise
Theorem 3.4.4 trivially holds). Then, by Remark 3.4.2, we have for all
k = 0, 1, . . . , m that ‖fk‖ > 2ǫ. By Lemma 3.4.1 we obtain

‖fk‖ ≤ ‖fk−1‖ inf
λ≥0

(

1 − λtkA(ǫ)−1/2 + 2γ

(

5λ

‖fk−1‖

)q)

. (3.4.4)

Choose λ from the equation

λtk
4A(ǫ)

= 2γ

(

5λ

‖fk−1‖

)q

,

which implies that

λ = ‖fk−1‖
q

q−1 5
− q

q−1 (8γA(ǫ))
− 1

q−1 t
1

q−1

k .

Define

Aq := 4(8γ)
1

q−1 5
q

q−1 .
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Using the notation p := q
q−1 , we get from (3.4.4)

‖fk‖ ≤ ‖fk−1‖
(

1 − 1

4

λtk
A(ǫ)

)

= ‖fk−1‖
(

1 − tpk‖fk−1‖p

AqA(ǫ)p

)

.

Raising both sides of this inequality to the power p and taking into account
the inequality xr ≤ x for r ≥ 1, 0 ≤ x ≤ 1, we obtain

‖fk‖p ≤ ‖fk−1‖p

(

1 − tpk‖fk−1‖p

AqA(ǫ)p

)

.

By an analogue of Lemma 2.3.3 (see Temlyakov (2000b, Lemma 3.1)), using
the estimates ‖f‖ ≤ A(ǫ) + ǫ and Aq > 1, we get

‖fm‖p ≤ Aq(A(ǫ) + ǫ)p

(

1 +
m

∑

k=1

tpk

)−1

,

which implies

‖fm‖ ≤ C(q, γ)(A(ǫ) + ǫ)

(

1 +
m

∑

k=1

tpk

)−1/p

.

Theorem 3.4.4 is proved.

3.5. Fixed relaxation

In this section we consider a relaxed greedy algorithm with relaxation pre-
scribed in advance. Let a sequence r := {rk}∞k=1, rk ∈ [0, 1), of relaxation
parameters be given. Then, at each step of our new algorithm we build the
mth approximant of the form Gm = (1−rm)Gm−1 +λϕm. With an approx-
imant of this form we are not limited to approximation of functions from
A1(D) as in the WRGA. In this section we study the Greedy Algorithm
with Weakness parameter t and Relaxation r (GAWR(t, r)). In addition to
the acronym GAWR(t, r) we will use the abbreviated acronym GAWR for
the name of this algorithm. We give a general definition of the algorithm in
the case of a weakness sequence τ . We present in this section results from
Temlyakov (2006c).

GAWR(τ, r). Let τ := {tm}∞m=1, tm ∈ (0, 1], be a weakness sequence
and let r := {rm}∞m=1, rm ∈ [0, 1), be a relaxation sequence. We define
f0 := f and G0 := 0. Then, for each m ≥ 1 we have the following inductive
definition.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ tm‖Ffm−1‖D.
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(2) Find λm ≥ 0 such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
λ≥0

‖f − ((1 − rm)Gm−1 + λϕm)‖

and define

Gm := (1 − rm)Gm−1 + λmϕm.

(3) Let

fm := f − Gm.

In the case τ = {t} we write t instead of τ in the notation. We note that
in the case rk = 0, k = 1, . . . , when there is no relaxation the GAWR(τ,0)
coincides with the Weak Dual Greedy Algorithm. We now proceed to the
GAWR. We begin with an analogue of Lemma 3.2.9.

Lemma 3.5.1. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u). Take a number ǫ ≥ 0 and two elements f , f ǫ from X
such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) > 0. Then we have for the GAWR(t, r)

‖fm‖ ≤ ‖fm−1‖(1 − rm(1 − ǫ/‖fm−1‖)
+ 2ρ((rm(‖f‖ + A(ǫ)/t))/((1 − rm)‖fm−1‖)), m = 1, 2, . . . .

Theorem 3.5.2. Let a sequence r satisfy the conditions

∞
∑

k=1

rk = ∞, rk → 0 as k → ∞.

Then the GAWR(t, r) converges in any uniformly smooth Banach space for
each f ∈ X and for all dictionaries D.

Proof. We prove this theorem in two steps.

I First, we prove that lim infm→∞ ‖fm‖ = 0. The proof goes by contradic-
tion. We want to prove that lim infm→∞ ‖fm‖ = 0. Assume the contrary.
Then there exists K and β > 0 such that we have for all k ≥ K that
‖fk‖ ≥ β. By Lemma 3.5.1, for m > K

‖fm‖ ≤ ‖fm−1‖
(

1 − rm

(

1 − ǫ

β

)

+ 2ρ

(

rm(‖f‖ + A(ǫ)/t)

(1 − rm)β

))

.

We choose ǫ := β/2. Using the assumption that X is uniformly smooth and
the assumption rk → 0 as k → ∞, we find N ≥ K such that for m ≥ N
we have

2ρ

(

rm(‖f‖ + A(ǫ)/t)

(1 − rm)β

)

≤ rm/4.
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Then, for m > N ,

‖fm‖ ≤ ‖fm−1‖(1 − rm/4).

The assumption
∑∞

m=1 rm = ∞ implies that ‖fm‖ → 0 as m → ∞. The
obtained contradiction to the assumption β > 0 completes the proof of
part I.

II Secondly, we prove that limm→∞ ‖fm‖ = 0. Using the assumption rk → 0
as k → ∞, we find N1 such that for k ≥ N1 we have rk ≤ 1/2. For such k
we obtain from Lemma 3.5.1

‖fk‖ − ǫ ≤ (1 − rk)(‖fk−1‖ − ǫ) + 2‖fk−1‖ρ
(

Brk

‖fk−1‖

)

, (3.5.1)

with B := 2(‖f‖ + A(ǫ)/t). Denote ak := ‖fk−1‖ − ǫ. We note that from
the definition of fk it follows that

ak+1 ≤ ak + rk‖f‖. (3.5.2)

Using the fact that the function ρ(u)/u is monotone increasing on [0,∞),
we obtain from (3.5.1) for ak > 0

ak+1 ≤ ak

(

1 − rk + 2
‖fk−1‖

ak
ρ

(

Brk

‖fk−1‖

))

≤ ak

(

1 − rk + 2ρ

(

Brk

ak

))

. (3.5.3)

We now introduce an auxiliary sequence {bk} of positive numbers that is
defined by the equation

2ρ(Brk/bk) = rk.

The property ρ(u)/u → 0 as u → 0 implies bk → 0 as k → ∞. Inequality
(3.5.3) guarantees that for k ≥ N1 such that ak ≥ bk, we have ak+1 ≤ ak.

Let

U := {k : k ≥ N1, ak ≥ bk}.
If the set U is finite then we get

lim sup
k→∞

ak ≤ lim
k→∞

bk = 0.

This implies

lim sup
m→∞

‖fm‖ ≤ ǫ.

Consider the case when U is infinite. We note that part I of the proof
implies that there is a subsequence {kj} such that akj ≤ 0, j = 1, 2, . . . .
This means that

U = ∪∞
j=1[lj , nj ],
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with the property nj−1 < lj − 1. For k /∈ U , k ≥ N1 we have

ak < bk. (3.5.4)

For k ∈ [lj , nj ], we have by (3.5.2) and the monotonicity property of ak,
when k ∈ [lj , nj ], that

ak ≤ alj ≤ alj−1 + rlj−1‖f‖ ≤ blj−1 + rlj−1‖f‖. (3.5.5)

By (3.5.4) and (3.5.5) we obtain

lim sup
k→∞

ak ≤ 0 ⇒ lim sup
m→∞

‖fm‖ ≤ ǫ.

Taking into account that ǫ > 0 is arbitrary, we complete the proof.

We now proceed to results on the rate of approximation. We will need
the following technical lemma (see Temlyakov (1999, 2006c)).

Lemma 3.5.3. Let a sequence {an}∞n=1 have the following property. For,
given positive numbers α < γ ≤ 1, A > a1, we have, for all n ≥ 2,

an ≤ an−1 + A(n − 1)−α. (3.5.6)

If for some ν ≥ 2 we have

aν ≥ Aν−α,

then

aν+1 ≤ aν(1 − γ/ν). (3.5.7)

Then there exists a constant C(α, γ) such that, for all n = 1, 2, . . . , we have

an ≤ C(α, γ)An−α.

Theorem 3.5.4. Let X be a uniformly smooth Banach space with modu-
lus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Let r := {2/(k+2)}∞k=1. Consider
the GAWR(t, r). For a pair of functions f , f ǫ, satisfying

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

we have

‖fm‖ ≤ ǫ + C(q, γ)(‖f‖ + A(ǫ)/t)m−1+1/q.

Proof. By Lemma 3.5.1 we obtain

‖fk‖ − ǫ ≤ (1 − rk)(‖fk−1‖ − ǫ) + Cγ‖fk−1‖
(

rk(‖f‖ + A(ǫ)/t)

‖fk−1‖

)q

. (3.5.8)

Consider, as in the proof of Theorem 3.5.2, the sequence an := ‖fn−1‖ − ǫ.
We plan to apply Lemma 3.5.3 to the sequence {an}. We set α := 1−1/q ≤
1/2. The parameters γ ∈ (α, 1] and A will be chosen later. We note that

‖fm‖ ≤ ‖fm−1‖ + rm‖f‖.
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Therefore, condition (3.5.6) of Lemma 3.5.3 is satisfied with A ≥ 2‖f‖. Let
ak ≥ Ak−α. Then, by (3.5.8) we get

ak+1 ≤ ak(1 − rk + Cγ(rk(‖f‖ + A(ǫ)/t)/ak)
q

≤ ak

(

1 − 2

k + 2
+

Cγ(‖f‖ + A(ǫ)/t)q2q

Aq

kαq

(k + 2)q

)

.

Setting A := max(2‖f‖, 2(2Cγ)1/q(‖f‖ + A(ǫ)/t)), we obtain

ak+1 ≤ ak

(

1 − 3

2(k + 2)

)

.

Thus condition (3.5.7) of Lemma 3.5.3 is satisfied with γ = 3/4. Applying
Lemma 3.5.3 we obtain

‖fm‖ ≤ ǫ + C(q, γ)(‖f‖ + A(ǫ)/t)m−1+1/q.

We conclude this section by the following remark. The algorithms GAWR
and WGAFR are both dual-type greedy algorithms. The first steps are
similar for both algorithms: we use the norming functional Ffm−1 in the
search for an element ϕm. The WGAFR provides more freedom than the
GAWR does in choosing good coefficients wm and λm. This results in
more flexibility in choosing the weakness sequence τ = {tm}. For instance,
condition (3.4.3) of Theorem 3.4.3 is satisfied if τ = {t}, t ∈ (0, 1] for
any uniformly smooth Banach space. In the case ρ(u) ≤ γuq, 1 < q ≤ 2,
condition (3.4.3) is satisfied if

∞
∑

m=1

tpm = ∞, p := q/(q − 1).

3.6. Thresholding algorithms

We begin with a remark on computational complexity of greedy algorithms.
The main point of Section 3.4 is in proving that relaxation allows us to build
greedy algorithms (see the WGAFR) that are computationally simpler than
the WCGA and perform as well as the WCGA. We note that the WCGA
and the WGAFR differ in the second step of the algorithm. However, the
most computationally involved step of all greedy algorithms is the greedy
step (the first step of the algorithm). One of the goals of relaxation was to
get rid of the assumption f ∈ A1(D) (as in the WRGA). All relaxed greedy
algorithms from Sections 3.4 and 3.5 are applicable to (and converge for)
any f ∈ X. We want to point out that the information f ∈ A1(D) allows
us to simplify substantially the greedy step of the algorithm. It is remarked
in Section 3.2 (see Remark 3.2.10) that we can replace the first step of the
WCGA by the following search criterion:

Ffm−1(ϕm) ≥ tm‖fm−1‖. (3.6.1)
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A similar remark (see Section 3.3, Remark 3.3.5) holds for the WRGA.
The requirement (3.6.1) is weaker than the requirement of the greedy step
of the WCGA. However, Theorem 3.2.6 holds for this modification of the
WCGA. Relation (3.6.1) is a threshold-type inequality and can be checked
more easily than the greedy inequality.

We now consider two algorithms defined and studied in Temlyakov (2006c)
with a different type of thresholding. These algorithms work for any f ∈ X.
We begin with the Dual Greedy Algorithm with Relaxation and Threshold-
ing (DGART).

DGART. We define f0 := f and G0 := 0. Then, for a given parameter
δ ∈ (0, 1/2] we have the following inductive definition for m ≥ 1.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ δ. (3.6.2)

If there is no ϕm ∈ D satisfying (3.6.2) then we stop.

(2) Find wm and λm such that

‖f − ((1 − wm)Gm−1 + λmϕm)‖ = inf
λ,w

‖f − ((1 − w)Gm−1 + λϕm)‖

and define

Gm := (1 − wm)Gm−1 + λmϕm.

(3) Let

fm := f − Gm.

If ‖fm‖ ≤ δ‖f‖ then we stop, otherwise we proceed to the (m + 1)th
iteration.

The following algorithm is a thresholding-type modification of the WCGA.
This modification can be applied to any f ∈ X.

Chebyshev Greedy Algorithm with Thresholding (CGAT). For
a given parameter δ ∈ (0, 1/2], we conduct instead of the greedy step
of the WCGA the following thresholding step: find ϕm ∈ D such that
Ffm−1(ϕm) ≥ δ. Choosing such a ϕm, if one exists, we apply steps (2) and
(3) of the WCGA. If such ϕm does not exist, then we stop. We also stop if
‖fm‖ ≤ δ‖f‖.

Theorem 3.6.1. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ǫ ≥ 0 and two
elements f , f ǫ from X such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),
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with some number A(ǫ) > 0. Then the DGART (CGAT) will stop after
m ≤ C(γ)δ−p ln(1/δ), p := q/(q − 1), iterations with

‖fm‖ ≤ ǫ + δA(ǫ).

Proof. We begin with the error bound. For both algorithms, the DGART
and the CGAT, our stopping criterion guarantees that either ‖Ffm‖D ≤ δ
or ‖fm‖ ≤ δ‖f‖. In the latter case the required bound follows from simple
inequalities:

‖f‖ ≤ ǫ + ‖f ǫ‖ ≤ ǫ + A(ǫ).

Thus, assume that ‖Ffm‖D ≤ δ holds. In the case of the CGAT we apply
Lemma 3.2.7 with L = span(ϕ1, . . . , ϕm) and obtain

‖fm‖ = Ffm(fm) = Ffm(f) ≤ ǫ + Ffm(f ǫ) ≤ ǫ + ‖Ffm‖DA(ǫ) ≤ ǫ + δA(ǫ).

For the DGART we apply Lemma 3.2.7 with fm−1 and L = span(Gm−1, ϕm),
and get

‖fm‖ = Ffm(fm) = Ffm(fm−1) = Ffm(f)

≤ ǫ + Ffm(f ǫ) ≤ ǫ + ‖Ffm‖DA(ǫ) ≤ ǫ + δA(ǫ).

This proves the required bound.
We now proceed to the bound of m. We prove the bound for both algo-

rithms simultaneously. We note that for the DGART

‖fk‖ = inf
λ,w

‖fk−1 + wGk−1 − λϕk‖ ≤ inf
λ≥0

‖fk−1 − λϕk‖.

We write for all k ≤ m, λ ≥ 0

‖fk−1 − λϕk‖ + ‖fk−1 + λϕk‖ ≤ 2‖fk−1‖(1 + ρ(λ/‖fk−1‖)). (3.6.3)

Next,

‖fk−1 + λϕk‖ ≥ Ffk−1
(fk−1 + λϕk) ≥ ‖fk−1‖ + λδ. (3.6.4)

Combining (3.6.3) with (3.6.4), we obtain

‖fk‖ ≤ inf
λ≥0

‖fk−1 − λϕk‖ ≤ inf
λ≥0

(

‖fk−1‖ − λδ + 2‖fk−1‖γ(λ/‖fk−1‖)q
)

.

(3.6.5)
Solving the equation δx/2 = 2γxq we get x1 = (δ/(4γ))1/(q−1). Setting
λ := x1‖fk−1‖ we obtain

‖fk‖ ≤ ‖fk−1‖(1 − δx1/2) = ‖fk−1‖(1 − c(γ)δp).

Thus,

‖fk‖ ≤ ‖f‖(1 − c(γ)δp)k.

By the stopping condition ‖fm‖ ≤ δ‖f‖, we deduce that m ≤ n, where n is
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the smallest integer for which

(1 − c(γ)δp)n ≤ δ.

This implies

m ≤ C(γ)δ−p ln(1/δ).

We proceed to one more thresholding-type algorithm (see Temlyakov
(2005a)). Keeping in mind possible applications of this algorithm, we do
not assume that a dictionary D is symmetric: g ∈ D implies −g ∈ D. To
indicate this we use the notation D+ for such a dictionary. We do not as-
sume that elements of a dictionary D+ are normalized (‖g‖ = 1 if g ∈ D+)
and assume only that ‖g‖ ≤ 1 if g ∈ D+. By A1(D+) we denote the closure
of the convex hull of D+. Let ǫ = {ǫn}∞n=1, ǫn > 0, n = 1, 2, . . . .

Incremental Algorithm with schedule ǫ (IA(ǫ)). Let f ∈ A1(D+).

Denote f i,ǫ
0 := f and Gi,ǫ

0 := 0. Then, for each m ≥ 1 we have the following
inductive definition.

(1) ϕi,ǫ
m ∈ D+ is any element satisfying

F
f i,ǫ

m−1
(ϕi,ǫ

m − f) ≥ −ǫm.

(2) Define

Gi,ǫ
m := (1 − 1/m)Gi,ǫ

m−1 + ϕi,ǫ
m /m.

(3) Let

f i,ǫ
m := f − Gi,ǫ

m .

We note that, as in Lemma 3.2.8, we have for any bounded linear func-
tional F and any D+

sup
g∈D+

F (g) = sup
f∈A1(D+)

F (f).

Therefore, for any F and any f ∈ A1(D+),

sup
g∈D+

F (g) ≥ F (f).

This guarantees existence of ϕi,ǫ
m .

Theorem 3.6.2. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Define

ǫn := K1γ
1/qn−1/p, p =

q

q − 1
, n = 1, 2, . . . .

Then, for any f ∈ A1(D+) we have

‖f i,ǫ
m ‖ ≤ C(K1)γ

1/qm−1/p, m = 1, 2 . . . .
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Proof. We will use the abbreviated notation fm := f i,ǫ
m , ϕm := ϕi,ǫ

m , Gm :=
Gi,ǫ

m . Writing

fm = fm−1 − (ϕm − Gm−1)/m,

we immediately obtain the trivial estimate

‖fm‖ ≤ ‖fm−1‖ + 2/m. (3.6.6)

Since

fm = (1 − 1/m)fm−1 − (ϕm − f)/m

= (1 − 1/m)(fm−1 − (ϕm − f)/(m − 1)), (3.6.7)

we obtain

‖fm−1 − (ϕm − f)/(m − 1)‖ (3.6.8)

≤ ‖fm−1‖(1 + 2ρ(2((m − 1)‖fm−1‖)−1)) + ǫm(m − 1)−1,

in a similar way to (3.6.5). Using the definition of ǫm and the assumption
ρ(u) ≤ γuq, we make the following observation. There exists a constant
C(K1) such that, if

‖fm−1‖ ≥ C(K1)γ
1/q(m − 1)−1/p, (3.6.9)

then

2ρ(2((m − 1)‖fm−1‖)−1) + ǫm((m − 1)‖fm−1‖)−1 ≤ 1/(4m), (3.6.10)

and therefore, by (3.6.7) and (3.6.8),

‖fm‖ ≤ (1 − 3/(4m))‖fm−1‖. (3.6.11)

Taking into account (3.6.6), we apply Lemma 3.5.3 to the sequence an =
‖fn‖, n = 1, 2, . . . with α = 1/p, β = 3/4, and complete the proof of
Theorem 3.6.2.

3.7. Greedy expansions

3.7.1. Introduction

From the definition of a dictionary it follows that any element f ∈ X can be
approximated arbitrarily well by finite linear combinations of the dictionary
elements. The primary goal of this section is to study representations of an
element f ∈ X by a series

f ∼
∞

∑

j=1

cj(f)gj(f), gj(f) ∈ D, cj(f) > 0, j = 1, 2, . . . . (3.7.1)

In building the representation (3.7.1) we should construct two sequences:
{gj(f)}∞j=1 and {cj(f)}∞j=1. In this section the construction of {gj(f)}∞j=1
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will be based on ideas used in greedy-type nonlinear approximation (greedy-
type algorithms). This justifies the use of the term greedy expansion for
(3.7.1) considered in the section. The construction of {gj(f)}∞j=1 is, clearly,
the most important and difficult part in building the representation (3.7.1).
On the basis of the contemporary theory of nonlinear approximation with
respect to redundant dictionaries, we may conclude that the method of using
a norming functional in greedy steps of an algorithm is the most productive
in approximation in Banach spaces. This method was utilized in the Weak
Chebyshev Greedy Algorithm and in the Weak Dual Greedy Algorithm. We
use this same method in new algorithms considered in this section. A new
qualitative result of this section establishes that we have a lot of flexibility
in constructing a sequence of coefficients {cj(f)}∞j=1.

Denote

rD(f) := sup
Ff

‖Ff‖D := sup
Ff

sup
g∈D

Ff (g).

We note that, in general, a norming functional Ff is not unique. This is
why we take supFf

over all norming functionals of f in the definition of

rD(f). It is known that in the case of uniformly smooth Banach spaces (our
primary object here) the norming functional Ff is unique. In such a case
we do not need supFf

in the definition of rD(f): we have rD(f) = ‖Ff‖D.
We begin with a description of a general scheme that provides an expan-

sion for a given element f . Later, specifying this general scheme, we will
obtain different methods of expansion.

Dual-Based Expansion (DBE). Let t ∈ (0, 1] and f = 0. Denote f0 := f .
Assume {fj}m−1

j=0 ⊂ X, {ϕj}m−1
j=1 ⊂ D and a set of coefficients {cj}m−1

j=1 of

expansion have already been constructed. If fm−1 = 0 then we stop (set
cj = 0, j = m, m + 1, . . . in the expansion) and get f =

∑m−1
j=1 cjϕj . If

fm−1 = 0 then we conduct the following two steps.

(1) Choose ϕm ∈ D such that

sup
Ffm−1

Ffm−1(ϕm) ≥ trD(fm−1).

(2) Define

fm := fm−1 − cmϕm,

where cm > 0 is a coefficient either prescribed in advance or chosen
from a concrete approximation procedure.

We call the series

f ∼
∞

∑

j=1

cjϕj (3.7.2)
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the Dual-Based Expansion of f with coefficients cj(f) := cj , j = 1, 2, . . .
with respect to D.

Denote

Sm(f,D) :=
m

∑

j=1

cjϕj .

Then it is clear that

fm = f − Sm(f,D).

We prove some convergence results for the DBE in Sections 3.7.2 and 3.7.3.
In Section 3.7.3 we consider a variant of the Dual-Based Expansion with co-
efficients chosen by a certain simple rule. The rule depends on two numerical
parameters, t ∈ (0, 1] (the weakness parameter from the definition of the
DBE) and b ∈ (0, 1) (the tuning parameter of the approximation method).
The rule also depends on a majorant µ of the modulus of smoothness of the
Banach space X.

Dual Greedy Algorithm with parameters (t, b, µ) (DGA(t, b, µ)).
Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u), and let µ(u) be a continuous majorant of ρ(u): ρ(u) ≤ µ(u), u ∈
[0,∞). For parameters t ∈ (0, 1], b ∈ (0, 1] we define sequences {fm}∞m=0,
{ϕm}∞m=1, {cm}∞m=1 inductively. Let f0 := f . If for m ≥ 1 fm−1 = 0 then
we set fj = 0 for j ≥ m and stop. If fm−1 = 0 then we conduct the following
three steps.

(1) Take any ϕm ∈ D such that

Ffm−1(ϕm) ≥ trD(fm−1). (3.7.3)

(2) Choose cm > 0 from the equation

‖fm−1‖µ(cm/‖fm−1‖) =
tb

2
cmrD(fm−1). (3.7.4)

(3) Define

fm := fm−1 − cmϕm. (3.7.5)

In Section 3.7.3 we prove the following convergence result.

Theorem 3.7.1. Let X be a uniformly smooth Banach space with the
modulus of smoothness ρ(u) and let µ(u) be a continuous majorant of ρ(u)
with the property µ(u)/u ↓ 0 as u → +0. Then, for any t ∈ (0, 1] and
b ∈ (0, 1), the DGA(t, b, µ) converges for each dictionary D and all f ∈ X.

The following result from Section 3.7.3 gives the rate of convergence.
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Theorem 3.7.2. Assume X has a modulus of smoothness ρ(u) ≤ γuq,
q ∈ (1, 2]. Denote µ(u) = γuq. Then, for any dictionary D and any f ∈
A1(D), the rate of convergence of the DGA(t, b, µ) is given by

‖fm‖ ≤ C(t, b, γ, q)m
− t(1−b)

p(1+t(1−b)) , p :=
q

q − 1
.

3.7.2. Convergence of the Dual-Based Expansion

We begin with the following lemma.

Lemma 3.7.3. Let f ∈ X. Assume that the coefficients {cj}∞j=1 of the
expansion

f ∼
∞

∑

j=1

cjϕj , fm := f −
m

∑

j=1

cjϕj

are non-negative and satisfy the following two conditions:

∞
∑

j=1

cjrD(fj−1) < ∞, (3.7.6)

∞
∑

j=1

cj = ∞. (3.7.7)

Then

lim inf
m→∞

‖fm‖ = 0. (3.7.8)

Proof. The proof of this lemma is similar to the proof of Lemma 1 from
Ganichev and Kalton (2003). Denote sn :=

∑n
j=1 cj . Then (3.7.7) implies

(see Bary (1961, p. 904)) that

∞
∑

n=1

cn/sn = ∞. (3.7.9)

Using (3.7.6), we get

∞
∑

n=1

snrD(fn−1)cn/sn =
∞

∑

n=1

cnrD(fn−1) < ∞.

Thus, by (3.7.9),

lim inf
n→∞

snrD(fn−1) = 0,

and also (sn−1 ≤ sn)

lim inf
n→∞

snrD(fn) = 0.
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Let

lim
k→∞

snk
rD(fnk

) = 0. (3.7.10)

Consider {Ffnk
}. The unit sphere in the dual X∗ is weakly∗ compact (see

Habala, Hájek and Zizler (1996, p. 45)). Let {Fi}∞i=1, Fi := Ffnki
be a

w∗-convergent subsequence. Denote

F := w∗ − lim
i→∞

Fi.

We will complete the proof of Lemma 3.7.3 by contradiction. We assume
that (3.7.8) does not hold, that is, there exist α > 0 and N ∈ N such that

‖fm‖ ≥ α, m ≥ N, (3.7.11)

and will thence derive a contradiction.
We begin by deducing from (3.7.11) that F = 0. Indeed, we have

F (f) = lim
i→∞

Fi(f), (3.7.12)

and

Fi(f) = Fi

(

fnki
+

nki
∑

j=1

cjϕj

)

= ‖fnki
‖ +

nki
∑

j=1

cjFi(ϕj) ≥ α − snki
rD(fnki

),

(3.7.13)
for big i. Relations (3.7.12), (3.7.13) and (3.7.10) imply that F (f) ≥ α,
and hence F = 0. This implies that there exist g ∈ D for which F (g) > 0.
However,

F (g) = lim
i→∞

Fi(g) ≤ lim
i→∞

rD(fnki
) = 0.

We have a contradiction, which completes the proof of Lemma 3.7.3.

In the paper Temlyakov (2007b) we pushed to the extreme the flexibility
of choice of the coefficients cj(f) in (3.7.1). We made these coefficients inde-
pendent of an element f ∈ X. Surprisingly, for properly chosen coefficients
we obtained results for the corresponding dual greedy expansion similar to
the above Theorems 3.7.1 and 3.7.2. Even more surprisingly, we obtained
similar results for the corresponding X-greedy expansions. We proceed to
the formulation of these results. Let C := {cm}∞m=1 be a fixed sequence of
positive numbers. We restrict ourselves to positive numbers because of the
symmetry of the dictionary D.

X-Greedy Algorithm with coefficients C (XGA(C)). We define f0 :=
f , G0 := 0. Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is such that (assuming existence)

‖fm−1 − cmϕm‖X = inf
g∈D

‖fm−1 − cmg‖X .
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(2) Let

fm := fm−1 − cmϕm, Gm := Gm−1 + cmϕm.

Dual Greedy Algorithm, weakness τ , coefficients C (DGA(τ, C)).
Let τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f ,
G0 := 0. Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D is any element satisfying

Ffm−1(ϕm) ≥ tm‖Ffm−1‖D.

(2) Define

fm := fm−1 − cmϕm, Gm := Gm−1 + cmϕm.

In the case τ = {t}, t ∈ (0, 1], we write t instead of τ in the notation.
The first result on convergence properties of the DGA(t, C) was obtained in
Temlyakov (2007a). We prove it here.

Theorem 3.7.4. Let X be a uniformly smooth Banach space with the
modulus of smoothness ρ(u). Assume C = {cj}∞j=1 is such that cj ≥ 0,
j = 1, 2, . . . ,

∞
∑

j=1

cj = ∞,

and for any y > 0,
∞

∑

j=1

ρ(ycj) < ∞. (3.7.14)

Then, for the DGA(t, C) we have

lim inf
m→∞

‖fm‖ = 0. (3.7.15)

Proof. The proof is by contradiction. Assume (3.7.15) does not hold. Then
∃α > 0 and ∃N ∈ N such that, for all m ≥ N ,

‖fm‖ ≥ α > 0.

From the definition of the modulus of smoothness we have

‖fn−1 − cnϕn‖ + ‖fn−1 + cnϕn‖ ≤ 2‖fn−1‖(1 + ρ(cn/‖fn−1‖)). (3.7.16)

Using the definition of ϕn,

Ffn−1(ϕn) ≥ trD(fn−1), (3.7.17)

we get

‖fn−1 + cnϕn‖ ≥ Ffn−1(fn−1 + cnϕn) (3.7.18)

= ‖fn−1‖ + cnFfn−1(ϕn) ≥ ‖fn−1‖ + cntrD(fn−1).
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Combining (3.7.16) and (3.7.18), we get

‖fn‖ = ‖fn−1−cnϕn‖ ≤ ‖fn−1‖(1+2ρ(cn/‖fn−1‖))−cntrD(fn−1). (3.7.19)

We note that by Remark 3.2.3

‖fn−1‖ρ(cn/‖fn−1‖) ≤ αρ(cn/α), n > N.

Therefore, by the assumption (3.7.14)

∞
∑

n=1

‖fn−1‖ρ(cn/‖fn−1‖) < ∞. (3.7.20)

This and (3.7.19) imply

∞
∑

n=1

cnrD(fn−1) ≤ t−1

(

‖f‖ + 2
∞

∑

n=1

‖fn−1‖ρ(cn/‖fn−1‖)
)

< ∞.

It remains to apply Lemma 3.7.3 to complete the proof.

In Temlyakov (2007b) we proved an analogue of Theorem 3.7.4 for the
XGA(C) and improved upon the convergence in Theorem 3.7.4 in the case of
uniformly smooth Banach spaces with power-type modulus of smoothness.
Under an extra assumption on C we replaced lim inf by lim. Here is the
corresponding result from Temlyakov (2007b).

Theorem 3.7.5. Let C ∈ ℓq \ ℓ1 be a monotone sequence. Then the
DGA(t, C) and the XGA(C) converge for each dictionary and all f ∈ X
in any uniformly smooth Banach space X with modulus of smoothness
ρ(u) ≤ γuq, q ∈ (1, 2].

In Temlyakov (2007b) we also addressed a question of rate of approxima-
tion for f ∈ A1(D). We proved the following theorem.

Theorem 3.7.6. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, q ∈ (1, 2]. We set s := (1 + 1/q)/2
and Cs := {k−s}∞k=1. Then the DGA(t, Cs) and XGA(Cs) (for this algo-
rithm t = 1) converge for f ∈ A1(D) with the following rate: for any
r ∈ (0, t(1 − s)),

‖fm‖ ≤ C(r, t, q, γ)m−r.

In the case t = 1, Theorem 3.7.6 provides the rate of convergence m−r

for f ∈ A1(D) with r arbitrarily close to (1 − 1/q)/2. Theorem 3.7.2 pro-
vides a similar rate of convergence. It would be interesting to know if the
rate m−(1−1/q)/2 is the best that can be achieved in greedy expansions (for
each D, any f ∈ A1(D), and any X with ρ(u) ≤ γuq, q ∈ (1, 2]). We
note that there are greedy approximation methods that provide an error
bound of the order m1/q−1 for f ∈ A1(D) (see Temlyakov (2003a, 2006c)
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for recent results). However, these approximation methods do not provide
an expansion.

3.7.3. A modification of the Weak Dual Greedy Algorithm

We begin this subsection with a proof of Theorem 3.7.1. Here we give a
definition of the DGA(τ, b, µ), τ = {tk}∞k=1, tk ∈ (0, 1] that coincides with
the definition of the DGA(t, b, µ) from Section 3.7.1 in the case τ = {t}.
Dual Greedy Algorithm with parameters (τ, b, µ) (DGA(τ, b, µ)).
Let X be a uniformly smooth Banach space with modulus of smoothness
ρ(u), and let µ(u) be a continuous majorant of ρ(u): ρ(u) ≤ µ(u), u ∈
[0,∞). For a sequence τ = {tk}∞k=1, tk ∈ (0, 1] and a parameter b ∈ (0, 1],
we define sequences {fm}∞m=0, {ϕm}∞m=1, {cm}∞m=1 inductively. Let f0 := f .
If fm−1 = 0 for some m ≥ 1, then we set fj = 0 for j ≥ m and stop. If
fm−1 = 0 then we conduct the following three steps.

(1) Take any ϕm ∈ D such that

Ffm−1(ϕm) ≥ tmrD(fm−1). (3.7.21)

(2) Choose cm > 0 from the equation

‖fm−1‖µ(cm/‖fm−1‖) =
tmb

2
cmrD(fm−1). (3.7.22)

(3) Define

fm := fm−1 − cmϕm. (3.7.23)

Proof of Theorem 3.7.1. In this case τ = {t}, t ∈ (0, 1]. We have by
(3.7.19)

‖fm‖ = ‖fm−1 − cmϕm‖ ≤ ‖fm−1‖(1 + 2ρ(cm/‖fm−1‖)) − cmtrD(fm−1).
(3.7.24)

Using the choice of cm, we find

‖fm‖ ≤ ‖fm−1‖ − t(1 − b)cmrD(fm−1). (3.7.25)

In particular, (3.7.25) implies that {‖fm‖} is a monotone decreasing se-
quence and

t(1 − b)cmrD(fm−1) ≤ ‖fm−1‖ − ‖fm‖.
Thus

∞
∑

m=1

cmrD(fm−1) < ∞. (3.7.26)

We have the following two cases:

(I)

∞
∑

m=1

cm = ∞, (II)

∞
∑

m=1

cm < ∞.
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In case (I), by Lemma 3.7.3 we obtain

lim inf
m→∞

‖fm‖ = 0 ⇒ lim
m→∞

‖fm‖ = 0.

It remains to consider case (II). We prove convergence in this case by con-
tradiction. Assume

lim
m→∞

‖fm‖ = α > 0. (3.7.27)

By (II) we have fm → f∞ = 0 as m → ∞. We note that by uniform
smoothness of X we get

lim
m→∞

‖Ffm − Ff∞‖ = 0.

We have Ff∞ = 0, and therefore there is a g ∈ D such that Ff∞(g) > 0.
However,

Ff∞(g) = lim
m→∞

Ffm(g) ≤ lim
m→∞

rD(fm) = 0. (3.7.28)

Indeed, by (3.7.22) and (3.7.27) we get

rD(fm−1) ≤ αc−1
m µ(cm/α)

2

tb
→ 0,

as m → ∞.
Theorem 3.7.1 is proved.

Remark 3.7.7. It is clear from the above proof that Theorem 3.7.1 holds
for an algorithm obtained from the DGA(τ, b, µ), by replacing (3.7.22) by

‖fm−1‖µ(cm/‖fm−1‖) =
b

2
cmFfm−1(ϕm). (3.7.29)

Also, a parameter b in (3.7.22) and (3.7.29) can be replaced by varying
parameters bm ∈ (a, b) ⊂ (0, 1).

We proceed to study the rate of convergence of the DGA(τ, b, µ) in the
uniformly smooth Banach spaces with the power-type majorant of modulus
of smoothness: ρ(u) ≤ µ(u) = γuq, 1 < q ≤ 2. We now prove a statement
more general than Theorem 3.7.2.

Theorem 3.7.8. Let τ := {tk}∞k=1 be a non-increasing sequence 1 ≥ t1 ≥
t2 · · · > 0 and b ∈ (0, 1). Assume X has a modulus of smoothness ρ(u) ≤
γuq, q ∈ (1, 2]. Denote µ(u) = γuq. Then, for any dictionary D and any
f ∈ A1(D), the rate of convergence of the DGA(τ, b, µ) is given by

‖fm‖ ≤ C(b, γ, q)

(

1 +
m

∑

k=1

tpk

)− tm(1−b)
p(1+tm(1−b))

, p :=
q

q − 1
.

Proof. As in (3.7.25), we get

‖fm‖ ≤ ‖fm−1‖ − tm(1 − b)cmrD(fm−1). (3.7.30)
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Thus we need to estimate cmrD(fm−1) from below. It is clear that

‖fm−1‖A1(D) = ‖f −
m−1
∑

j=1

cjϕj‖A1(D) ≤ ‖f‖A1(D) +
m−1
∑

j=1

cj . (3.7.31)

Denote bn := 1 +
∑n

j=1 cj . Then, by (3.7.31) we get

‖fm−1‖A1(D) ≤ bm−1.

Next, by Lemma 3.2.8 we get

rD(fm−1) = sup
g∈D

Ffm−1(g) = sup
ϕ∈A1(D)

Ffm−1(ϕ)

≥ ‖fm−1‖−1
A1(D)Ffm−1(fm−1) ≥ ‖fm−1‖/bm−1. (3.7.32)

Substituting (3.7.32) into (3.7.30), we get

‖fm‖ ≤ ‖fm−1‖(1 − tm(1 − b)cm/bm−1). (3.7.33)

From the definition of bm we find

bm = bm−1 + cm = bm−1(1 + cm/bm−1).

Using the inequality

(1 + x)α ≤ 1 + αx, 0 ≤ α ≤ 1, x ≥ 0,

we obtain

btm(1−b)
m ≤ b

tm(1−b)
m−1 (1 + tm(1 − b)cm/bm−1). (3.7.34)

Multiplying (3.7.33) and (3.7.34), and using that tm ≤ tm−1, we get

‖fm‖btm(1−b)
m ≤ ‖fm−1‖btm−1(1−b)

m−1 ≤ ‖f‖ ≤ 1. (3.7.35)

The function µ(u)/u = γuq−1 is increasing on [0,∞). Therefore the cm from
(3.7.22) is greater than or equal to c′m from (see (3.7.32))

γ‖fm−1‖(c′m/‖fm−1‖)q =
tmb

2
c′m‖fm−1‖/bm−1, (3.7.36)

c′m =

(

tmb

2γ

)
1

q−1 ‖fm−1‖
q

q−1

b
1

q−1

m−1

. (3.7.37)

Setting

p :=
q

q − 1
, A−1 := (1 − b)

(

b

2γ

)
1

q−1

≤ 1/2,

we obtain

‖fm‖ ≤ ‖fm−1‖
(

1 − tpm
A

‖fm−1‖p

bp
m−1

)

(3.7.38)
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from (3.7.30), (3.7.32) and (3.7.37). Noting that bm ≥ bm−1, we infer from
(3.7.38) that

(‖fm‖/bm)p ≤ (‖fm−1‖/bm−1)
p(1 − A−1tpm(‖fm−1‖/bm−1)

p). (3.7.39)

Taking into account that ‖f‖ ≤ 1 < A, we obtain from (3.7.39) by an
analogue of Lemma 2.3.3 (see Temlyakov (2000b, Lemma 3.1))

(‖fm‖/bm)p ≤ A

(

1 +
m

∑

k=1

tpk

)−1

. (3.7.40)

Combining (3.7.35) and (3.7.40), we get

‖fm‖ ≤ C(b, γ, q)

(

1 +
m

∑

k=1

tpk

)− tm(1−b)
p(1+tm(1−b))

, p :=
q

q − 1
.

This completes the proof of Theorem 3.7.8.

In the case τ = {t}, t ∈ (0, 1], we get Theorem 3.7.2 from Theorem 3.7.8.

Remark 3.7.9. Theorem 3.7.8 holds for an algorithm obtained from the
DGA(τ, b, µ) by replacing (3.7.22) by (3.7.29).

It follows from the proof of Theorem 3.7.8 that it holds for a modification
of the DGA(τ, b, µ) when we replace the quantity rD(fm−1) in the definition
by its lower estimate (see (3.7.32)) ‖fm−1‖/bm−1, with bm−1 := 1+

∑m−1
j=1 cj .

Clearly, this modification is more suitable for practical implementation than
the DGA(τ, b, µ). We formulate the above remark as a separate result.

Modified Dual Greedy Algorithm (τ, b, µ) (MDGA(τ, b, µ)). Let
X be a uniformly smooth Banach space with modulus of smoothness ρ(u)
and let µ(u) be a continuous majorant of ρ(u): ρ(u) ≤ µ(u), u ∈ [0,∞).
For a sequence τ = {tk}∞k=1, tk ∈ (0, 1] and a parameter b ∈ (0, 1), we define
for f ∈ A1(D) sequences {fm}∞m=0, {ϕm}∞m=1, {cm}∞m=1 inductively. Let
f0 := f . If for m ≥ 1 fm−1 = 0, then we set fj = 0 for j ≥ m and stop. If
fm−1 = 0 then we conduct the following three steps.

(1) Take any ϕm ∈ D such that

Ffm−1(ϕm) ≥ tm‖fm−1‖
(

1 +
m−1
∑

j=1

cj

)−1

.

(2) Choose cm > 0 from the equation

µ(cm/‖fm−1‖) =
tmb

2
cm

(

1 +
m−1
∑

j=1

cj

)−1

.
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(3) Define

fm := fm−1 − cmϕm.

Theorem 3.7.10. Let τ := {tk}∞k=1 be a non-increasing sequence 1 ≥
t1 ≥ t2 · · · > 0 and b ∈ (0, 1). Assume X has a modulus of smoothness
ρ(u) ≤ γuq, q ∈ (1, 2]. Denote µ(u) = γuq. Then, for any dictionary D and
any f ∈ A1(D), the rate of convergence of the MDGA(τ, b, µ) is given by

‖fm‖ ≤ C(b, γ, q)

(

1 +
m

∑

k=1

tpk

)− tm(1−b)
p(1+tm(1−b))

, p :=
q

q − 1
.

Let us discuss an application of Theorem 3.7.2 in the case of a Hilbert
space. It is well known and easy to check that, for a Hilbert space H,

ρ(u) ≤ (1 + u2)1/2 − 1 ≤ u2/2.

Therefore, by Theorem 3.7.2 with µ(u) = u2/2, the DGA(t, b, µ) provides
the following error estimate:

‖fm‖ ≤ C(t, b)m
− t(1−b)

2(1+t(1−b)) for f ∈ A1(D). (3.7.41)

The estimate (3.7.41) with t = 1 gives

‖fm‖ ≤ C(b)m
− 1−b

2(2−b) for f ∈ A1(D). (3.7.42)

The exponent (1 − b)/(2(2 − b)) in this estimate tends to 1/4 when b tends
to 0. Comparing (3.7.42) with the upper estimate for the PGA (see Sec-
tion 2.3), we observe that the DGA(1, b, u2/2) with small b has a better
upper estimate for the rate of convergence than the known estimates for the
PGA. We note also that inequality (2.3.21) indicates that the exponent in
the power rate of decay of error for the PGA is less than 0.1898.

Let us figure out how the DGA(1, b, u2/2) works in Hilbert space. Con-
sider its mth step. Let ϕm ∈ D be from (3.7.3). Then it is clear that ϕm

maximizes 〈fm−1, g〉 over the dictionary D and

〈fm−1, ϕm〉 = ‖fm−1‖rD(fm−1).

The PGA would use ϕm with the coefficient 〈fm−1, ϕm〉 at this step. The
DGA(1, b, u2/2) uses the same ϕm and only a fraction of 〈fm−1, ϕm〉:

cm = b‖fm−1‖rD(fm−1). (3.7.43)

Thus the choice b = 1 in (3.7.43) corresponds to the PGA. However, it is
clear from the above considerations that our technique, designed for general
Banach spaces, does not work in the case b = 1. The above discussion
brings us the following surprising observation. The use of a small fraction
(cm = b〈fm−1, g〉) of an optimal coefficient results in an improvement of the
upper estimate for the rate of convergence.
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3.7.4. Convergence of the WDGA

We now study convergence of the Weak Dual Greedy Algorithm (WDGA)
defined in the Introduction of this chapter. We present in this subsection
results from Ganichev and Kalton (2003). We will prove the convergence
result under an extra assumption on a Banach space X.

Definition 3.7.11. (Property Γ) A uniformly smooth Banach space has
property Γ if there is a constant β > 0 such that, for any x, y ∈ X satisfying
Fx(y) = 0, we have

‖x + y‖ ≥ ‖x‖ + βFx+y(y).

Property Γ in the above form was introduced in Ganichev and Kalton
(2003). This condition (formulated somewhat differently) was considered
previously in the context of greedy approximation in Livshitz (2003).

Theorem 3.7.12. Let X be a uniformly smooth Banach space with prop-
erty Γ. Then the WDGA(τ) with τ = {t}, t ∈ (0, 1], converges for each
dictionary and all f ∈ X.

Proof. Let {fm}∞m=0 be a sequence generated by the WDGA(t). Then

fm−1 = fm + amϕm, Ffm(ϕm) = 0. (3.7.44)

We use property Γ with x := fm and y := amϕm and obtain

‖fm−1‖ ≥ ‖fm‖ + βamFfm−1(ϕm). (3.7.45)

This inequality, and monotonicity of the sequence {‖fm‖}, imply that

∞
∑

m=1

amFfm−1(ϕm) < ∞ ⇒
∞

∑

m=1

amrD(fm−1) < ∞. (3.7.46)

As in the proof of Theorem 3.7.1, we consider separately two cases:

(I)
∞

∑

m=1

am = ∞, (II)
∞

∑

m=1

am < ∞.

In case (I), by (3.7.46) and Lemma 3.7.3 we obtain

lim inf
m→∞

‖fm‖ = 0 ⇒ lim
m→∞

‖fm‖ = 0.

In case (II) we argue by contradiction. Assume

lim
m→∞

‖fm‖ = α > 0.

Then, by (II) we have fm → f∞ = 0 as m → ∞. By uniform smoothness of
X we get

lim
m→∞

‖Ffm − Ff∞‖ = 0, lim
m→∞

‖Ffm − Ffm−1‖ = 0. (3.7.47)
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In particular, (3.7.44) and (3.7.47) imply that

lim
m→∞

Ffm−1(ϕm) = 0 ⇒ lim
m→∞

rD(fm) = 0. (3.7.48)

We have Ff∞ = 0, and therefore there is a g ∈ D such that Ff∞(g) > 0.
However, by (3.7.47) and (3.7.48),

Ff∞(g) = lim
m→∞

Ffm(g) ≤ lim
m→∞

rD(fm) = 0.

The obtained contradiction completes the proof.
We now give a direct proof in case (I) that does not use Lemma 3.7.3. By

property Γ we get

‖fm‖ ≤ ‖fm−1‖ − βamFfm−1(ϕm) ≤ ‖fm−1‖ − tβam‖Ffm−1‖D. (3.7.49)

Let ǫ > 0, A(ǫ) > 0, and f ǫ be such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D).

Then

‖fm−1‖ = Ffm−1(fm−1) = Ffm−1(f − f ǫ + f ǫ − Gm−1)

≤ ǫ + ‖Ffm−1‖D(A(ǫ) + bm),

where bm :=
∑m−1

k=1 ak. Therefore,

‖Ffm−1‖D ≥ (‖fm−1‖ − ǫ)/(A(ǫ) + bm). (3.7.50)

We complete the proof by obtaining a contradiction. If limm→∞ ‖fm‖ =
α > 0, and ǫ := α/2, then (3.7.49) and (3.7.50) imply

‖fm‖ ≤ ‖fm−1‖
(

1 − tβam

2(A(ǫ) + bm)

)

.

Assumption (I) implies

∞
∑

m=1

am

A(ǫ) + bm
= ∞ ⇒ ‖fm‖ → 0.

We now turn to the Lp-spaces. The following results, Proposition 3.7.13
and Theorem 3.7.14, are from Ganichev and Kalton (2003).

Proposition 3.7.13. The Lp-space with 1 < p < ∞ has property Γ.

Proof. Let p ∈ (1,∞). Consider the following function:

φp(u) :=
u|1 + u|p−2(1 + u) − u

|1 + u|p − pu − 1
, u = 0, φp(0) := 2/p.

We note that |1+u|p −pu−1 > 0 for u = 0. Indeed, it is sufficient to check
the inequality for u ≥ −1/p. In this case |1+u|p = (1+u)p > 1+pu, u = 0.



Greedy approximation 391

It is easy to check that

lim
u→0

φp(u) = 2/p.

Thus, φp(u) is continuous on (−∞,∞). This and

lim
u→−∞

φp(u) = lim
u→∞

φp(u) = 1

imply that φp(u) ≤ Cp.
We now proceed to property Γ. For any two real functions x(s), y(s), the

inequality φp(u) ≤ Cp implies

|x(s) + y(s)|p−2(x(s) + y(s))y(s) − |x(s)|p−2x(s)y(s) (3.7.51)

≤ Cp(|x(s) + y(s)|p − p|x(s)|p−2x(s)y(s) − |x(s)|p).
Suppose that Fx(y) = 0. This means that

∫

|x(s)|p−2x(s)y(s) ds = 0. (3.7.52)

Integrating inequality (3.7.51) and taking into account (3.7.52), we get

‖x + y‖p−1Fx+y(y) ≤ Cp(‖x + y‖p − ‖x‖p). (3.7.53)

Next,

‖x‖ = Fx(x) = Fx(x + y) ≤ ‖x + y‖.
Therefore, (3.7.53) implies

Fx+y(y) ≤ pCp(‖x + y‖ − ‖x‖). (3.7.54)

It remains to note that (3.7.54) is equivalent to property Γ with β =
(pCp)

−1.

Combining Theorem 3.7.12 with Proposition 3.7.13 we obtain the follow-
ing result.

Theorem 3.7.14. Let p ∈ (1,∞). Then the WDGA(τ) with τ = {t},
t ∈ (0, 1], converges for each dictionary and all f ∈ Lp.

3.8. Relaxation; X-greedy algorithms

In Sections 3.2–3.7 we studied dual greedy algorithms. In this section we
define some generalizations of the X-Greedy Algorithm using the idea of
relaxation. We begin with an analogue of the WGAFR.

X-Greedy Algorithm with Free Relaxation (XGAFR). We define
f0 := f and G0 := 0. Then, for each m ≥ 1 we have the following inductive
definition.
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(1) ϕm ∈ D and λm ≥ 0, wm are such that

‖f − ((1−wm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0,w

‖f − ((1−w)Gm−1 + λg)‖

and

Gm := (1 − wm)Gm−1 + λmϕm.

(2) Let

fm := f − Gm.

Using this definition, we obtain that for any t ∈ (0, 1]

‖fm‖ ≤ inf
λ≥0,w

‖f − ((1 − w)Gm−1 + λϕt
m)‖,

where the ϕt
m ∈ D is an element satisfying

Ffm−1(ϕ
t
m) ≥ t‖Ffm−1‖D.

Setting t = 1 we obtain a version of Lemma 3.4.1 for the XGAFR.

Lemma 3.8.1. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u). Take a number ǫ ≥ 0 and two elements f , f ǫ from X
such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) ≥ ǫ. Then we have for the XGAFR

‖fm‖ ≤ ‖fm−1‖ inf
λ≥0

(

1 − λA(ǫ)−1

(

1 − ǫ

‖fm−1‖

)

+ 2ρ

(

5λ

‖fm−1‖

))

,

for m = 1, 2, . . . .

Theorems 3.4.3 and 3.4.4 were derived from Lemma 3.4.1. In the same
way we derive from Lemma 3.8.1 the following analogues of Theorems 3.4.3
and 3.4.4 for the XGAFR.

Theorem 3.8.2. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u). Then, for any f ∈ X we have for the XGAFR

lim
m→∞

‖fm‖ = 0.

Theorem 3.8.3. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ǫ ≥ 0 and two
elements f , f ǫ from X such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) > 0. Then we have for the XGAFR

‖fm‖ ≤ max
(

2ǫ, C(q, γ)(A(ǫ) + ǫ)(1 + m)−1/p
)

, p := q/(q − 1).
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We now proceed to an analogue of the GAWR.

X-Greedy Algorithm with Relaxation r (XGAR(r)). Given a relax-
ation sequence r := {rm}∞m=1, rm ∈ [0, 1), we define f0 := f and G0 := 0.
Then, for each m ≥ 1 we have the following inductive definition.

(1) ϕm ∈ D and λm ≥ 0 are such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0

‖f − ((1 − rm)Gm−1 + λg)‖

and

Gm := (1 − rm)Gm−1 + λmϕm.

(2) Let

fm := f − Gm.

We note that in the case rk = 0, k = 1, . . . , when there is no relaxation,
the XGAR(0) coincides with the X-Greedy Algorithm. Practically noth-
ing is known about convergence and rate of convergence of the X-Greedy
Algorithm. However, relaxation helps to prove convergence results for the
XGAR(r). Here are analogues of the corresponding results for the GAWR.

Lemma 3.8.4. Let X be a uniformly smooth Banach space with modulus
of smoothness ρ(u). Take a number ǫ ≥ 0 and two elements f , f ǫ from X
such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) > 0. Then we have for the XGAR(r)

‖fm‖ ≤ ‖fm−1‖
(

1 − rm

(

1 − ǫ

‖fm−1‖

)

+ 2ρ

(

rm(‖f‖ + A(ǫ))

(1 − rm)‖fm−1‖

))

,

for m = 1, 2, . . . .

Theorem 3.8.5. Let a sequence r := {rk}∞k=1, rk ∈ [0, 1), satisfy the
conditions

∞
∑

k=1

rk = ∞, and rk → 0 as k → ∞.

Then the XGAR(r) converges in any uniformly smooth Banach space for
each f ∈ X and for all dictionaries D.

Theorem 3.8.6. Let X be a uniformly smooth Banach space with modu-
lus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Let r := {2/(k+2)}∞k=1. Consider
the XGAR(r). For a pair of functions f , f ǫ satisfying

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

we have

‖fm‖ ≤ ǫ + C(q, γ)(‖f‖ + A(ǫ))m−1+1/q.
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3.9. Greedy algorithms with approximate evaluations and

restricted search

In this section we study a modification of the WCGA that is motivated by
numerical applications. In this modification, we allow steps of the WCGA
to be performed approximately with some error control. We show that the
modified version of the WCGA performs as well as the WCGA. We develop
the theory of the Approximate Weak Chebyshev Greedy Algorithm in a
general setting: X is an arbitrary uniformly smooth Banach space and D is
any dictionary. We begin with some remarks on the WCGA. It is clear that
in the case of an infinite dictionary D there is no direct computationally
feasible way to evaluate supg∈D Ffc

m−1
(g). This makes the greedy step, even

in a weak version, very difficult to realize in practice. At the second step
of the WCGA we are looking for the best approximant of f from Φm. We
know that such an approximant exists. However, in practice we cannot find
it exactly: we can only find it approximately.

The above observations motivated us to consider a variant of the WCGA
with an eye towards practically implementable algorithms. We note that
Approximate Weak Greedy Algorithms in Hilbert spaces were studied in
Gribonval and Nielsen (2001a) and Galatenko and Livshitz (2003, 2005).

In Temlyakov (2005a) we studied the following modification of the WCGA.
Let three sequences τ = {tk}∞k=1, δ = {δk}∞k=0, η = {ηk}∞k=1 of numbers from
[0, 1] be given.

Approximate Weak Chebyshev Greedy Algorithm (AWCGA). We

define f0 := f τ,δ,η
0 := f . Then, for each m ≥ 1 we have the following

inductive definition.

(1) Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1(fm−1) ≥ ‖fm−1‖(1 − δm−1);

and ϕm := ϕτ,δ,η
m ∈ D is any element satisfying

Fm−1(ϕm) ≥ tm sup
g∈D

Fm−1(g).

(2) Define

Φm := span{ϕj}m
j=1,

and let

Em(f) := inf
ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f − Gm‖ ≤ Em(f)(1 + ηm).
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(3) Let

fm := f τ,δ,η
m := f − Gm.

The term approximate in this definition means that we use a functional
Fm−1 that is an approximation to the norming (peak) functional Ffm−1

and also that we use an approximant Gm ∈ Φm which satisfies a weaker
assumption than being a best approximant to f from Φm. Thus, in the
approximate version of the WCGA, we have addressed the issue of non-exact
evaluation of the norming functional and the best approximant. We did not
address the issue of finding the supg∈D Ffc

m−1
(g). In the paper Temlyakov

(2005b) we addressed this issue. We did it in two steps. First we considered
the corresponding modification of the WCGA, and then the modification of
the AWCGA. These modifications are done in the style of the concept of
depth search from Donoho (2001).

We now consider a countable dictionary D = {±ψj}∞j=1. We denote

D(N) := {±ψj}N
j=1. Let N := {Nj}∞j=1 be a sequence of natural numbers.

Restricted Weak Chebyshev Greedy Algorithm (RWCGA). We

define f0 := f c,τ,N
0 := f . Then, for each m ≥ 1 we have the following

inductive definition.

(1) ϕm := ϕc,τ,N
m ∈ D(Nm) is any element satisfying

Ffm−1(ϕm) ≥ tm sup
g∈D(Nm)

Ffm−1(g).

(2) Define

Φm := Φτ,N
m := span{ϕj}m

j=1,

and define Gm := Gc,τ,N
m to be the best approximant to f from Φm.

(3) Let

fm := f c,τ,N
m := f − Gm.

We formulate some results from Temlyakov (2005a, 2005b) in a particu-
lar case of a uniformly smooth Banach space with modulus of smoothness
of power type (see Temlyakov (2005a, 2005b) for the general case). The
following theorem was proved in Temlyakov (2005a).

Theorem 3.9.1. Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2, that is, ρ(u) ≤ γuq. Assume that

∞
∑

m=1

tpm = ∞, p =
q

q − 1
,

and

δm = o(tpm), ηm = o(tpm).
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Then the AWCGA converges for any f ∈ X.

We now give two theorems from Temlyakov (2005b) on greedy algorithms
with restricted search.

Theorem 3.9.2. Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2, that is, ρ(u) ≤ γuq. Assume that limm→∞ Nm = ∞
and

∞
∑

m=1

tpm = ∞, p =
q

q − 1
.

Then the RWCGA converges for any f ∈ X.

For b > 0, K > 0, we define the class

Ab
1(K,D) := {f : d(f, A1(D(n)) ≤ Kn−b, n = 1, 2, . . .}.

Here, A1(D(n)) is a convex hull of {±ψj}n
j=1, and for a compact set F

d(f, F ) := inf
φ∈F

‖f − φ‖.

Theorem 3.9.3. Let X be a uniformly smooth Banach space with mod-
ulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Then, for t ∈ (0, 1] there exist
C1(t, γ, q, K), C2(t, γ, q, K) such that, for N with Nm ≥ C1(t, γ, q, K)mr/b,
m = 1, 2, . . . , we have for any f ∈ Ab

1(K,D)

‖f c,τ,N
m ‖ ≤ C2(t, γ, q, K)m−r, τ = {t}, r := 1 − 1/q.

We note that we can choose an algorithm from Theorem 3.9.3 that satisfies
the polynomial depth search condition Nm ≤ Cma from Donoho (2001).

We proceed to an algorithm that combines approximate evaluations with
restricted search. Let three sequences τ = {tk}∞k=1, δ = {δk}∞k=0, η =
{ηk}∞k=1 of numbers from [0, 1] be given. Let N := {Nj}∞j=1 be a sequence
of natural numbers.

Restricted Approximate Weak Chebyshev Greedy Algorithm

(RAWCGA). We define f0 := f τ,δ,η,N
0 := f . Then, for each m ≥ 1 we

have the following inductive definition.

(1) Fm−1 is a functional with properties

‖Fm−1‖ ≤ 1, Fm−1(fm−1) ≥ ‖fm−1‖(1 − δm−1),

and ϕm := ϕτ,δ,η,N
m ∈ D(Nm) is any element satisfying

Fm−1(ϕm) ≥ tm sup
g∈D(Nm)

Fm−1(g).

(2) Define

Φm := span{ϕj}m
j=1,
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and let

Em(f) := inf
ϕ∈Φm

‖f − ϕ‖.

Let Gm ∈ Φm be such that

‖f − Gm‖ ≤ Em(f)(1 + ηm).

(3) Let

fm := f τ,δ,η,N
m := f − Gm.

Theorem 3.9.4. Let a Banach space X have modulus of smoothness ρ(u)
of power type 1 < q ≤ 2, that is, ρ(u) ≤ γuq. Assume limm→∞ Nm = ∞,

∞
∑

m=1

tpm = ∞, p =
q

q − 1
,

and

δm = o(tpm), ηm = o(tpm).

Then the RAWCGA converges for any f ∈ X.

We now make some general remarks on m-term approximation with the
depth search constraint. The depth search constraint means that for a given
m we restrict ourselves to systems of elements (subdictionaries) containing
at most N := N(m) elements. Let X be a linear metric space and for a set
D ⊂ X, let Lm(D) denote the collection of all linear subspaces spanned by
m elements of D. For a linear subspace L ⊂ X, the ǫ-neighbourhood Uǫ(L)
of L is the set of all x ∈ X which are at a distance not exceeding ǫ from L
(i.e., those x ∈ X which can be approximated to an error not exceeding ǫ by
the elements of L). For any compact set F ⊂ X and any integers N, m ≥ 1,
we define the (N, m)-entropy numbers (see Temlyakov (2003a, p. 94))

ǫN,m(F, X) := inf
#D=N

inf{ǫ : F ⊂ ∪L∈Lm(D)Uǫ(L)}.

We let Σm(D) denote the collection of all functions (elements) in X which
can be expressed as a linear combination of at most m elements of D. Thus
each function s ∈ Σm(D) can be written in the form

s =
∑

g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,

where the cg are real or complex numbers. For a function f ∈ X we define
its best m-term approximation error

σm(f) := σm(f,D) := inf
s∈Σm(D)

‖f − s‖.

For a function class F ⊂ X we define

σm(F ) := σm(F,D) := sup
f∈F

σm(f,D).
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We can express σm(F,D) as

σm(F,D) = inf{ǫ : F ⊂ ∪L∈Lm(D)Uǫ(L)}.
It follows therefore that

inf
#D=N

σm(F,D) = ǫN,m(F, X).

In other words, finding best dictionaries consisting of N elements for m-term
approximation of F is the same as finding sets D which attain the (N, m)-
entropy numbers ǫN,m(F, X). It is easy to see that ǫm,m(F, X) = dm(F, X),
where dm(F, X) is the Kolmogorov width of F in X. This establishes a
connection between (N, m)-entropy numbers and the Kolmogorov widths.
One can find a further discussion on the nonlinear Kolmogorov (N, m)-
widths and the entropy numbers in Temlyakov (2003a).

3.10. An application of greedy algorithms for the

discrepancy estimates

Let 1 ≤ p < ∞. We recall the definition of the Lp-discrepancy of points
{ξ1, . . . , ξm} ⊂ Ωd := [0, 1]d. Let χ[a,b](·) be the characteristic function of
the interval [a, b]. For x, y ∈ Ωd, let

B(x, y) :=
d

∏

j=1

χ[0,xj ](yj).

Then the Lp-discrepancy of ξ := {ξ1, . . . , ξm} ⊂ Ωd is defined by

D(ξ, m, d)p :=

∥

∥

∥

∥

∫

Ωd

B(x, y) dy − 1

m

m
∑

µ=1

B(x, ξµ)

∥

∥

∥

∥

Lp(Ωd)

.

It will be convenient for us to study a slight modification of D(ξ, m, d)p. For
a, t ∈ [0, 1], let

H(a, t) := χ[0,a](t) − χ[a,1](t),

and for x, y ∈ Ωd

H(x, y) :=
d

∏

j=1

H(xj , yj).

We define the symmetrized Lp-discrepancy by

Ds(ξ, m, d)p :=

∥

∥

∥

∥

∫

Ωd

H(x, y) dy − 1

m

m
∑

µ=1

H(x, ξµ)

∥

∥

∥

∥

Lp(Ωd)

.

The L∞-discrepancies D(ξ, m, d)∞ and Ds(ξ, m, d)∞ are defined in the same
way, with the Lp-norm replaced by the L∞-norm.
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Using the identity

χ[0,xj ](yj) =
1

2
(H(1, yj) + H(xj , yj)),

we get a simple inequality,

D(ξ, m, d)∞ ≤ Ds(ξ, m, d)∞. (3.10.1)

We are interested in ξ with small discrepancy. Consider

D(m, d)p := inf
ξ

D(ξ, m, d)p, Ds(m, d)p := inf
ξ

Ds(ξ, m, d)p.

For 1 < p < ∞ the following relation is known,

D(m, d)p ≍ m−1(lnm)(d−1)/2 (3.10.2)

(see Beck and Chen (1987, p. 5)), with constants in ≍ depending on p
and d. The correct order of D(m, d)p, p = 1,∞, for d ≥ 3 is unknown.
The following estimate was obtained in Heinrich, Novak, Wasilkowski and
Wozniakowski (2001):

D(m, d)∞ ≤ Cd1/2m−1/2. (3.10.3)

It is pointed out in Heinrich et al. (2001) that (3.10.3) is only an existence
theorem and even the constant C in (3.10.3) is unknown. Their proof is
a probabilistic one. There are also some other estimates in Heinrich et al.

(2001) with explicit constants. We mention one of them,

D(m, d)∞ ≤ C(d ln d)1/2((lnm)/m)1/2, (3.10.4)

with an explicit constant C. The proof of (3.10.4) is also probabilistic.
In this section we apply greedy-type algorithms to obtain upper estimates

of D(m, d)p, 1 ≤ p ≤ ∞ in the style of (3.10.3) and (3.10.4). The important
feature of our proof is that it is deterministic, and moreover it is construc-
tive. Formally, the optimization problem

D(m, d)p = inf
ξ

D(ξ, m, d)p

is deterministic: one needs to minimize over {ξ1, . . . , ξm} ⊂ Ωd. However,
minimization by itself does not provide any upper estimate. It is known (see
Davis et al. (1997)) that simultaneous optimization over many parameters
({ξ1, . . . , ξm} in our case) is a very difficult problem. We note that

D(m, d)p = σe
m(J,B)p := inf

g1,...,gm∈B
‖J(·) − 1

m

m
∑

µ=1

gµ‖Lp(Ωd),

where

J(x) =

∫

Ωd

B(x, y) dy
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and

B = {B(x, y) : y ∈ Ωd}.

It was proved in Davis et al. (1997) that if an algorithm finds the best
m-term approximation for each f ∈ R

N for every dictionary D, with the
number of elements of order Nk, k ≥ 1, then this algorithm solves an
NP-hard problem. Thus, in nonlinear m-term approximation we look for
methods (algorithms) which provide approximation close to best m-term
approximation, and at each step solve an optimization problem over only
one parameter (ξµ in our case). In this section we will provide such an
algorithm for estimating σe

m(J,B)p. We call this algorithm ‘constructive’
because it provides an explicit construction with feasible one-parameter
optimization steps.

We proceed to the construction. We will use in our construction the IA(ǫ)
which was studied in Section 3.6. We will use the following corollaries of
Theorem 3.6.2.

Corollary 3.10.1. We apply Theorem 3.6.2 for X = Lp(Ωd), p ∈ [2,∞),
D+ = {H(x, y) : y ∈ Ωd}, f = Js(x), where

Js(x) =

∫

Ωd

H(x, y) dy ∈ A1(D+).

Using (3.1.12), we get by Theorem 3.6.2 a constructive set ξ1, . . . , ξm, such
that

Ds(ξ, m, d)p = ‖(Js)i,ǫ
m ‖Lp(Ωd) ≤ Cp1/2m−1/2,

with absolute constant C.

Corollary 3.10.2. We apply Theorem 3.6.2 for X = Lp(Ωd), p ∈ [2,∞),
D+ = {B(x, y) : y ∈ Ωd}, f = J(x), where

J(x) =

∫

Ωd

B(x, y) dy ∈ A1(D+).

Using (3.1.12), we get by Theorem 3.6.2 a constructive set ξ1, . . . , ξm, such
that

D(ξ, m, d)p = ‖J i,ǫ
m ‖Lp(Ωd) ≤ Cp1/2m−1/2,

with absolute constant C.

Corollary 3.10.3. We apply Theorem 3.6.2 for X = Lp(Ωd), p ∈ [2,∞),
D+ = {B(x, y)/‖B(·, y)‖Lp(Ωd) : y ∈ Ωd}, f = J(x). Using (3.1.12), we get
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by Theorem 3.6.2 a constructive set ξ1, . . . , ξm such that

∥

∥

∥

∥

∫

Ωd

B(x, y) dy − 1

m

m
∑

µ=1

(

p

p + 1

)d( d
∏

j=1

(1 − ξµ
j )−1/p

)

B(x, ξµ)

∥

∥

∥

∥

Lp(Ωd)

≤ C

(

p

p + 1

)d

p1/2m−1/2,

with absolute constant C.

We note that in the case X = Lp(Ωd), p ∈ [2,∞), D+ = {H(x, y) : x ∈
Ωd}, f = Js(y), the implementation of the IA(ǫ) is a sequence of maxi-
mization steps when we maximize functions of d variables. An important
advantage of the Lp-spaces is a simple and explicit form of the norming
functional Ff of a function f ∈ Lp(Ωd). The Ff acts as (for real Lp-spaces)

Ff (g) =

∫

Ωd

‖f‖1−p
p |f |p−2fg dy.

Thus the IA(ǫ) should find at a step m an approximate solution to the
following optimization problem (over y ∈ Ωd)

∫

Ωd

|f i,ǫ
m−1(x)|p−2f i,ǫ

m−1(x)H(x, y) dx → max.

Let us discuss one possible application of the WRGA instead of the IA(ǫ).
An obvious change is that instead of the cubature formula

1

m

m
∑

µ=1

H(x, ξµ),

in the case of IA(ǫ), we have the cubature formula

m
∑

µ=1

wm
µ H(x, ξµ),

m
∑

µ=1

|wm
µ | ≤ 1,

in the case of the WRGA. It is a disadvantage of the WRGA. An advan-
tage of the WRGA is that we are more flexible in selecting an element ϕr

m

satisfying

F r
fm−1

(ϕr
m − Gr

m−1) ≥ tm sup
g∈D

F r
fm−1

(g − Gr
m−1)

than an element ϕi,ǫ
m satisfying

F
f i,ǫ

m−1
(ϕi,ǫ

m − f) ≥ −ǫm.

We will now derive an estimate for D(m, d)∞ from Corollary 3.10.2.
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Proposition 3.10.4. For any m there exists a constructive set

ξ = {ξ1, . . . , ξm} ⊂ Ωd

such that

D(ξ, m, d)∞ ≤ Cd3/2(max(ln d, lnm))1/2m−1/2, d, m ≥ 2 (3.10.5)

with an effective absolute constant C.

Proof. We use the inequality

D(ξ, m, d)∞ ≤ c(d, p)d(3d + 4)D(ξ, m, d)p/(p+d)
p , (3.10.6)

from Niederreiter, Tichy and Turnwald (1990), and the estimate for c(d, p)

c(d, p) ≤ 31/3d−1+2/(1+p/d), (3.10.7)

from Heinrich et al. (2001). Specifying p = d max(ln d, lnm) and using
Corollary 3.10.2 we get (3.10.5) from (3.10.6) and (3.10.7).
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